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Abstract

In recent years there has been a resurgence of interest in enhanced oil recovery techniques, such as

gas injection and in-situ combustion, as the need to access a wider array of hydrocarbon resources

increases. Along with this, CO2 sequestration as a carbon storage mechanism is increasingly impor-

tant. These subsurface flow problems can be physically unstable at the scale modeled. This means

that the displacement front will generally exhibit an unstable growth pattern known as viscous fin-

gering. When simulating these processes, numerical errors which can be strongly correlated with the

underlying computational grid can trigger, or at least bias, the formation of these fingers in ways not

dictated by the underlying rock properties. This can give rise to the so-called grid orientation effect,

where varying the orientations of the computational grid results in convergence to fundamentally

different solutions.

The interest of this thesis is the development of numerical techniques that reduce grid dependency

for these processes. We do this in a manner that draws upon fundamental numerical analysis

techniques in conjunction with a physical intuition about the underlying governing equations. The

governing equations for subsurface flow are of a mixed elliptic-hyperbolic character; here we focus

on the hyperbolic portion but seek methods compatible with general elliptic discretizations and

computational grid topologies.

Some aspects of the grid dependency can be traced back directly to the handling of the injection

wells. Perturbation created early in time and near the injection wells propagate into the interior of

the domain setting up an initial biasing for the simulation. We demonstrate that the handling of

injection wells drastically affects the final result. We propose two methods, a well-sponge method

and a local embedding technique, which extends the well region based on near-well models. Both of

these methods drastically increases the similarity between the solutions on different computational

grids.

The numerical method used in the interior region can also have a significant impact on the

computed solution. For multidimensional (multi-D) problems the structure of the numerical diffusion

tensor creates preferential flow directions. These preferential flow directions can be strongly coupled

to the grid, especially when a 1-D method is applied dimension by dimension. This motivates the

development of truly multi-D transport discretizations that incorporate local flow information into

iv



the flux calculation. We develop a family of compact, upstream biased multi-D finite volume methods

for 2-D simulation. The methods control the structure of the diffusion tensor and incorporate

characteristic flow information through the use of a local coupling methodology based on interaction

regions. The family of schemes is positive for linear equations and monotone for a class of scalar

nonlinear equations.

Two multi-D schemes, tight multi-D upstream weighting and smooth multi-D upstream weight-

ing, are proposed and analyzed. Since transverse diffusion largely controls finger formation in linear

problems, a third scheme is proposed called the Flat Scheme, which has constant transverse diffusion.

All the multi-D methods are appropriate for both explicit and implicit time stepping. The methods

are applied to both miscible and immiscible displacement problems and significantly reduce biasing

due to the grid as compared with the commonly used single point upstream weighting method.
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Chapter 1

Introduction

Computational tools and techniques are playing an increasingly important role in modern reservoir

management. This is due in part to increased computational resources which have allowed simulation

to move toward full field compositional models. Another contributing factor to this increased usage

is the desire to access a wider array of hydrocarbon resources, which may be more physically and/or

economically costly to produce. Some of these resources are more remote resources, such as deep

sea resources, whereas others may not be producible by primary and secondary recovery techniques,

such as water injection. This leads to an increased interest in using enhanced oil recovery (EOR)

processes, such as gas injection and in-situ combustion, which increase the mobility of the less mobile

oil allowing them to be more efficiently produced (Lake, 1989; Sarathi, 1999).

These processes face many computational challenges: the governing equations are tightly coupled

and highly nonlinear, the physics happens at widely varying length scales, and the rock properties

(porosity and permeability) can vary by several orders of magnitude at length scales that are short

with respect to the simulation scale (Gerritsen and Durlofsky, 2005). As more physics is added to the

problem, the governing equations can exhibit structures not found in traditional computational fluid

dynamics problems. For instance, fully compositional models result in a weakly hyperbolic system

of governing equations (?) requiring special computational techniques (Krishnamurthy, 2008).

Many EOR methods exhibit a physical instability at the modelling scale (Tan and Homsy,

1997; Riaz and Meiburg, 2004). This instability arises primarily in adverse mobility displacements,

that is, when the viscosity of the injected fluid is much lower than the viscosity of the resident

fluid. One of the challenges in simulating these displacements is that numerical errors can trigger,

or at least bias the triggering, of these fluid instabilities in ways not dictated by the underlying

rock properties (permeability and porosity). This can give rise to the so-called grid orientation

effect (GOE) (Todd et al., 1972), where different orientations of the computational grid result in

convergence to fundamentally different solutions. An example of this is given in Figure 1.1. Here we

have used a two component miscible model, presented in chapter 2, with a standard two-point flux

1
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(a) Periodically repeating 5 spot pattern with
two quarter five-spot domains

(b) Diagonal grid solution
front

(c) Parallel grid solution
front

Figure 1.1: A miscible adverse mobility ratio, M = 30, quarter five-spot displacement simulated on
a 50× 50 diagonal grid and 71× 71 parallel grid. In both solution profiles, the injector is located in
the lower left corner and the producer in the upper right corner.

discretization for the pressure equation (a five point finite difference stencil in 2-D) and dimensional,

or donor cell, upwinding for transport (a hyperbolic equation). For the quarter five-spot pattern

there are two principal axes of symmetry which allow different alignments of the simulation grid

with respect to the mean flow direction (between the injector and producer). The solution on the

two grids converge toward fundamentally different results as the grid resolution is increased even

though consistent and stable discretizations are used. Since the reservoir knows nothing about the

simulation grid, this lack of convergence to the same answer indicates that there is something more

complex occurring.

Since the work of (Todd et al., 1972) there has been a significant research efforts to understand,

reduce, and remove GOE. Fundamentally GOE arises because of an interaction of the above men-

tioned physical instability with numerical errors. These numerical errors, which can arise from a

variety of sources, trigger unstable modes in the solution, as is demonstrated throughout this thesis.

Amongst the most important errors contributing to GOE are the errors arising from the numerical

methods used for transport. Generally speaking work to alleviate GOE has fallen into several broad

categories: adaptation of the stencil to more fully capture the directionality of the flow, use higher

order methods along with a rotationally invariant fluid stabilizing diffusion term, and modification

of the grid to remove apparently preferred flow directions. These different approaches are more fully

review below.

1.1 Related Directions within the Industry

Of course, there are many other types of errors and uncertainties that must be considered in any

simulation project. Though much of this work is outside of the scope of this thesis it forms the wider
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context of developing more robust and accurate methods for assessing reservoir performance, so we

briefly review some related work here.

One of the first tasks in reservoir simulation is the building of a geocellular model. Unfortunately

there tends to be very little hard data, core samples and well data, which by its very nature sparse

(or non-existent in the initial reservoir characterization stage). Hence to a large extent the geological

properties must be inferred from softer information, such as seismic data, analogous outcrops, and

previous experience. The task of building these geological models is known as geostatistics (Caers,

2005). Various spatial statistic techniques, for instance Kriging, must be used to estimate the

reservoir properties. Since many different reservoirs may match the known hard and soft data

multiple realizations must be developed and evaluated.

Detailed geological models can have on the order of 107 − 108 cells. Models with this level of

detail cannot be simulated within a reasonable time frame, hours to days, so these models must be

coarsened to 105 − 106 cells depending on the type and detail of model needed. Furthermore, as

mentioned above, many realizations of the model must be run to properly account for the variability

in the problem, so even when massively parallel computers are available it may be more beneficial

to run a large number realizations as opposed to a few high fidelity models. There are two broad

classes of coarsening techniques used for reservoir simulation: upscaling (Wen and Gmez-Hernndez,

1996; Christie, 1996; Renard and de Marsily, 1997; Farmer, 2002) and multiscale methods (Hou and

Wu, 1997; Chen and Hou, 2003; Aarnes, 2004). In upscaling, coarse-scale governing equations are

prescribed based on fine-scale equations via a technique such as homogenization or volume averaging.

In practice the upscaled equations are often taken to be the same form as the fine-scale except with

updated parameters (absolute permeability, porosity, etc.). In this methodology both transport and

flow/pressure are solved for on the coarse-scale. In multi-scale methods the coarse-scale equations are

not expressed analytically but rather numerically as the fine-scale information is used throughout

the simulation in solving the equations. With multiscale methods the pressure is solved on the

coarse-scale whereas transport tends to be solved on the fine-scale, but this is not necessary.

Once the equations and model are developed comes the task of discretization. To a large degree

the industry standard for the transport, or hyperbolic, discretization is a method called single point

upstream weighting, which is closely related to donor cell upwinding (Aziz and Settari, 1979). More

general techniques will be developed later in this thesis (see chapter 4). For the pressure equation

there has been significant work within the literature to develop multi-point flux approximations (Aa-

vatsmark, 2002; Edwards and Rogers, 1998). A two-point flux approximation defines the pressure

difference, and therefore the velocity, across a grid face using the two neighboring cells to a face

whereas multi-point methods take into consideration several neighborings cells depending on the

local rock properties (permeability tensor) as well as the computational grid. When the simulation

model involves tensor permeabilities and/or non-orthogonal grids these multi-point methods may
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be necessary for a consistent pressure discretization. Closely related to this are multipoint trans-

missibility upscaling methods which take into account the stencil selection while upscaling from the

geological model (Lambers et al., 2009).

The goal of reservoir simulation is not to run simulations, but to develop knowledge and under-

standing of the system. Hence the simulations must be matched to data, for instance production

data and well log data; this is known as history matching. The hope is that a history matched model

says something about future performance of the reservoir. Unfortunately, as alluded to above, we

can never hope to full characterize the reservoir so uncertainty quantification is needed (Christie

et al., 2005, 2006). Generally speaking, in the field of uncertainty quantification there are two main

types of uncertainty: reducible (epistemic) and irreducible (aleatory) uncertainty. Irreducible un-

certainty has to do with natural variability within a model, that is, uncertainty that even sampling

cannot remove. Reducible uncertain has to do with parameters that have a single value but that is

not known but that could (in theory) be measured, such as porosity, permeability, fluid viscosity,

etc.. Of course in many applications measurement is not possible, so methods must be developed

to handle this. One methodology of handling these types of uncertainties is by sampling from the

probability distribution for each of the variables using some methodology, such as Monte Carlo

techniques. Of course the parameter space that must be sampled from is of quite high dimension

(tens to hundreds of parameters) so stochastic sampling algorithms can be used to more efficiently

explore the space. Once this is done Bayesian techniques can be used to infer confidence estimates

on the forecasts of the simulations. Hence when uncertainty is properly accounted for we are not

searching for a single model which fits the observed data but a ensemble of models with varying

levels of confidence.

In the above uncertainty was assumed to arise from unknown physical parameters and reservoir

characterization. There is another contributing factor to uncertainty — modelling errors (O’Sullivan

and Christie, 2005, 2006). Modeling error can arise from a variety of places including using sim-

plified physics and numerical discretization errors. In order to form more reliable estimates on the

confidence of our forecast these errors need to be accounted for during history matching process. To

do this the errors must be approximated or modelled in some way, such as by comparing coarse grid

solutions to fine grid or analytic solutions. One of the challenges for unstable flow problems is that

fine grid solutions may be worse than coarse grid solutions. This is due to the fact that numerical

errors trigger the underlying physical instability, as discussed above. This makes model calibration

and the development of suitable error models more challenging.

1.2 Past Approaches to Alleviate Grid Dependency Effects

Past strategies suggested in the literature to alleviate the GOE and other grid dependency effects

generally fit into one or more of the following three categories:
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1. Adaptation of the solution method for the pressure equation that determines the fluid flow.

Most approaches are based on extending the discretization stencil from the standard five points

to nine points in 2D (7 to 27 points in 3D).

2. Improvement of the transport calculation through the use of higher order numerical methods,

such as Essentially Non-Oscillatory (ENO) or Total-Variation Diminishing (TVD) schemes,

which diminish numerical diffusion, or by design of rotationally invariant numerical diffusion

terms that are added to existing transport schemes.

3. Modification of the grid so that there is no immediately obvious preferred direction of transport.

The paper by Todd et al. (1972) was the first to suggest using modified stencils. Their approach

was to replace the standard single point upstream (SPU) discretization of transmissibility with an

upstream discretization involving two points. A number of nine-point schemes were introduced for

Cartesian grids by, amongst others, Yanosik and McCracken (1979), Shiralkar (1990) and Potempa

(1983). These approaches are largely based on the concept of taking a linear combination of the

five point nearest neighbor stencil and the five point next-nearest (diagonal) neighboring stencil in

order to allow flow “between a block and the four blocks that are adjacent to its boundaries. . . as

well as flow between the block and the four blocks located at its corners” (Yanosik and McCracken,

1979). Though approach showed promise the methods do not explicitly take into account local flow

information or the grid dependent structure of a error terms. Shubin and Bell (1984) suggested

using a first order numerical diffusion term that reduces the grid dependency of the second order

central discretization of the transport equations. The formulation was motivated by analysis of the

modified equations. We discuss their scheme in further detail in chapter 3. The ideas of Shubin

and Bell form some of the motivation for the transport methods developed in chapter 4, but this

discretization rely heavily on a tightly coupled transport and pressure discretization. This means

that the discretization is not applicable for use with MPFA methods. The method is also not

monotone, which is a desirable property for first order methods.

The use of higher order discretization methods, such as Total Variation Diminishing (TVD) or

Essentially Non-Oscillatory (ENO) schemes, has been suggested by various authors, including Chen

et al. (1993) and Wolcott et al. (1996). These schemes allow physically stabilizing diffusion models

to be applied at reasonable grid densities due to the faster decay of higher order error terms under

grid refinement. Unfortunately, a large amount of diffusion is required to stabilize these problems

which can drastically degrade the quality of the simulation. Furthermore, higher order methods

reduce to first order methods near discontinuities resulting in the same grid dependent first order

error terms resulting in GOE. Part of the challenge is that is it very difficult to construct truly

multidimensional higher order methods, hence higher order methods tend to be applied along each

dimension of the grid. Though this has been quite successful in some applications, it ignores the cross

derivative terms (LeVeque, 2003, 1997) so there remains a first order error which can trigger GOE.
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Furthermore, higher order methods require special treatment of the wells, regions where there wide

stencils cannot be formed, and as we show later in thesis well errors are important when considering

GOE. Therefore, though we believe that higher order methods are beneficial and should continue to

be explored for use in reservoir engineering, there is also a need to develop less grid sensitive first

order discretization on top of which the higher order methods can be build. It should also be noted

that through there have been some work on higher order schemes for reservoir simulation (Blunt

and Rubin, 1990; Edwards, 2004; Jessen et al., 2008; Chen et al., 1993; Wolcott et al., 1996), by in

large the industry standard approach is to use the first order SPU method (Aziz and Settari, 1979).

Another method for alleviating GOE is the adaptation of the underlying computational grid.

This approach was first proposed by Robertson and Woo (1978) who suggested using an orthogonal

curvilinear grid based on streamlines. Other gridding methods have been proposed with the express

purpose of reducing GOE such as Pruess and Bodvarsson (1983) who suggested using (nearly) regular

hexahedral grids and Heinemann et al. (1991) who suggested using unstructured perpendicular

bisection (Voronoi) grids. Currently, non-Cartesian, whether structured or unstructured, grids are

often suggested for handling GOE in the literature since they can seemingly reduce directionally

preferred transport directions. A large part of this is due to the fact that the results suffer excessive

smoothing due to diffusion, as can be observed in the simulated results of these papers. Unstructured

grids can in themselves introduce grid dependency when the standard SPU discretization is used as

in demonstrated in Lamine and Edwards (2008).

One of the guiding principles in our work is that we do not wish to be required to select our

grids to alleviate grid orientation. The primary impetus for this principle is that a requirement

to mitigate a numerical artifact through choice of grid alignment immediately makes our results

strongly process dependent. For example, a change of wells will lead to a change of orientation of

principal flow paths with respect to the grid and an unknown amount of potential GOE. Also, we

prefer not to be locked in to a certain choice of grid since apart from GOE there may be other, and

conflicting, considerations in choosing a grid that can significantly affect the quality of numerical

solutions, such as upscaling methodology, handling of faults, or pressure equation discretization.

For instance, is is difficult to do a large number of simulation runs where the grid must adapt to

a physical feature, such as the location and geometry of a fault in an uncertainty quantification

procedure, with highly unstructured grids.

1.3 Goals of the Thesis

In this thesis we develop methods primarily motivated by the goal of reducing grid dependence.

We want to do this in a manner which keeps in mind the over overarching directions within the

industry as briefly outlined above. Namely we want to understand the nature of the errors that are

important for grid orientation so that they can be taken into account when developing error and
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uncertainty quantification strategies. Another reason for the development of the methods in this

thesis is that given a set of parameter ranges for the physical properties, e.g. porosity, fluid viscosity,

permeability, fault locations, etc., it may be impossible to history match a given reservoir to the

well data because the numerical errors are so strongly correlated with the underlying grid. As the

industry has been moving towards more robust and accurate discretizations for the pressure equation

the methods proposed in this work, which primarily concern the hyperbolic transport discretization,

are not developed assuming a specific form of the pressure discretization. Finally, we want methods

which are are at least as stable as the conventional techniques and which are applicable within range

of simulation frameworks and methodologies. We seek to do this in two distinct but complementary

ways: local near-well solution forcing and truly multi-D transport discretizations.

As is shown in Chapter 3, early-time and near-well perturbations contribute significantly to

the grid depend solution behavior seen in Figure 1.1. Hence this motivates the development of

techniques with which to force a near-well solution, resulting from either fine-scale simulation or

an assume analytic form of the solution. Of course, in this forcing procedure we must be careful

not to introduce perturbations into the solution which will results spurious simulation results. We

therefore propose two forcing procedures to do this. The first is a well-sponge methodology inspired

by sponge methods which have been proposed for enforcing boundary conditions in computational

acoustics (Bodony, 2006). This is essentially a penalty method where deviations in the solution

from the assumed near-well solution are penalized. The well-sponge method is not conservative,

so we also propose a local embedding technique, which we call LETIS. This method motivated by

immersed boundary methods (Mittal and Iaccarino, 2005), and in this strategy fluxes, as opposed

to cell averages, are forced which ensures conservation.

Motivated by the methods proposed by Shubin and Bell (1984), Helzel et al. (2005), and De-

coninck and Koren (1997) we also develop a family of multidimensional transport discretizations

for 2-D problems. Incorporating local flow information into the computational stencil allows us to

control the structure of the first order error term, therefore making the structure of the underlying

computational grid less apparent. The family of schemes we develop is similar to a family pro-

posed for constant velocity scalar advection by Roe and Sidilkover (1992) as well as Van Ransbeeck

and Hirsch (1997). Unlike these methods, our methods are provably monotone for scalar advection

in rough velocity fields as well as for a class of nonlinear equations. Furthermore, the developed

monotone methods can be used even when in the presence of gravitational forces, something that

has not been explored in the any of the above mentioned multi-D methods (see section 1.2. We

also propose a relaxed volume methodology for multi-phase simulation. This methodology is not

proposed to reduce grid dependence, but to increase the robustness of the simulated results as it

results in provably physical discrete variables. Our methods are also applicable with general pressure

discretizations and though Cartesian grids are used throughout this work the proofs as well as the

framework assume nothing about the underlying grid topology.
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1.4 Outline of the Thesis

In chapter 2, we present the governing equations used throughout this thesis. In general the flow

is multicomponent, multi-phase but we will make the simplifying assumptions of two-component,

two-phase flow without mass transfer between the phases. These simplification allow us to make

rigorous numerical analysis statements while retaining the necessary physical instability. We also

present a partially and fully miscible model which is used throughout this work along with the

immiscible model.

In chapter 3, we discuss the near-well methods. It is first shown that near-well and early-time

perturbations in the solution have a drastic effect on the solution front. We then propose two solution

forcing methods, a well-sponge and LETIS, to force near-well solutions onto the computational grid

in a manner which minimizes the introduction of perturbations into the solution. Shubin and Bell

(1984) isotropic error transport method is also explained in this chapter.

Chapter 4 begins the multi-D transport section of the thesis. Analysis of a family of multidi-

mensional finite difference schemes for constant, scalar advection is presented. These schemes are all

first order, but using modified equations analysis are shown to all have different first order numerical

diffusion tensors. We then develop a multidimensional, conservative finite volume framework for a

class of nonlinear PDEs. Within this framework is the family of multi-D schemes as well as several

other schemes — namely, a novel scheme with constant transverse diffusion, which we call the Flat

Scheme, for scalar advection.

In chapter 5, we apply the multi-D transport methods to a miscible gas injection problem. We

test the methods on two different domains, the previously mentioned quarter five-spot problem as

well as a radial displacement for both homogeneous and heterogeneous permeability fields.

In chapter 6, we apply the multi-D transport methods to nonlinear problems. The two problems

we consider are an immiscible water flood with and without gravity as well as partially miscible gas

injection with gravity. To do this we develop a mass conservative, volume relaxed simulation frame-

work. This framework results in physical masses and saturations even in the presence of numerical

errors and inexact pressure solutions. This is important for general transport discretizations.

Directions for future work and general conclusions are presented in chapters 7 and 8, respectively.



Chapter 2

Governing Equations

Flow in porous media is governed by a set of coupled differential equations. At the pore scale,

that is, the scale at which individual pores in the rock are resolved, the flow obeys the Navier-

Stokes equations. Direct numerical simulation of the fluids at this scale is not practical for field

scale simulation, so a set of empirical average equations are used. These equations attempt to

track the average behavior of the fluid without resolving the complex physics happening at the pore

scale. Note that Brinkman and Forchheimer extensions of Darcy’s law are not relevant for reservoir

simulation because we are not considering high porosity flow and do not have high velocities (the

flow is creeping everywhere, even near the wells). These extensions are sometimes used for pore

scale modelling, but not field scale modelling which we are considering here.

In this chapter we will outline the governing equations that are used in this work. We will also

present the various assumptions that are used throughout the work which maintain the important

physical behavior and mathematical structure needed but allow for more rigorous numerical analysis.

2.1 Multi-Phase, Multi-Component Flow Equations

In general, a porous media problem consists of nc chemical components flowing together. We let ci

be the mass concentration of component i. The mass concentrations obey a conservation law of the

form

φ
∂ci

∂t
+∇ · F i(c1, c2, . . . , cnc) = qi, i = 1, 2, · · · , nc (2.1)

where, for each component i, F i is the mass flux and qi is the source/sink term (i.e. wells). The

porosity of the medium is φ. These mass components flow together in np phases, where Sα is the

saturation of phase α, that is, the volume fraction of the fluid in phase α. Since these are volume

fractions,
∑np

α=1 Sα = 1. The fraction component i in phase α is xi,α, where
∑np

α=1 xi,α = 1. If the

9
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density of each phase is ρα, then the mass concentration of component i is

ci =
np∑

α=1

ραxi,αSα. (2.2)

We assume that the average velocity of a fluid phase α in a porous media obeys the commonly

used multi-phase extension of Darcy’s law

uα = −krα

µα
K∇(pα − ραgh), (2.3)

where pα is the pressure of phase α, g the gravitational constant, h the height, K the absolute

permeability tensor (a rock property which measures how easily fluid can flow in the rock), and µα

the viscosity of phase α. Relative permeability, kr,α, is a dimensionless measure of how easily a

phase can flow in the rock when other phases are present. The phase pressures are assumed to be

related through capillary pressure relationships,

pc,α,β = pα − pβ .

The mass flux F i can now be written in terms of the above defined quantities as (?)

F i =
np∑

α=1

xi,αραuα. (2.4)

Equations 2.1-2.4, along with thermodynamic phase equilibrium assumptions, govern the movement

of fluids. We have omitted diffusive and dispersive effects from the governing equations because

numerical errors will be larger than theses effects at the grid resolutions we will be using. For a

discussion of the relevant physics and length scales of diffusion see Russell and Wheeler (1984).

2.2 Simplifying Assumptions

As discussed in chapter 1, the goal of this work is to develop numerical methods with reduced

sensitivity to the computational grid. Though we could begin by developing methods for the full

compositional problem, as the equations become more complex, the analysis of the methods becomes

more challenging. Thus we instead introduce a set of simplifying assumptions which retains the

essential physical behavior and fluid instabilities but allows for more rigorous statements about the

numerical methods developed. In chapter 7 we will discuss some of the implications of removing

these assumptions and ways that this can be explored in future work.

First, we assume that there are only two components — oil and gas (or water, depending on the

context) i = o, g — which are strictly aligned with two phases with the same names, α = o, g. This
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means that

xo,o = 1, xo,g = 0, xg,g = 1, xg,o = 0,

and thus cα = ραSα. Our governing equations, including the phase velocities, can now be written

φ
∂cα

∂t
−∇ ·

(
ρα

krα

µα
K∇(p− ραgh)

)
= 0, α = o, w, (2.5)

where, for simplicity, we have neglected capillary effects so that the phases are all at the same

pressure, that is, p = po = pg. We focus exclusively on the limiting case of incompressible fluids so

that the phase densities are constant in space and time. The viscosities are assumed to be functions

of the saturations, µα = µα(Sα), with the property that when only phase α is present (Sα = 1) then

the viscosity is given by the single phase viscosity µ̄α, that is, µα(1) = µ̄α. The relative permeability

functions are also assumed to be functions of the saturations, krα = krα(Sα), with the property that

when phase α is not present krα(0) = 0. In this work we will test our methods with Corey (1954)

type relative permeabilities, where krα = Saα
α and aα can be different for each phase.

2.3 Pressure Equation

A pressure equation can be derived from Equation 2.5, along with the above assumptions, by scaling

by 1/ρα and summing over both phases

0 =
∑

α=o,w

1
ρα

(
φ

∂cα

∂t
−∇ ·

(
ρα

krα(Sα)
µα(Sα)

K∇(p− ραgh)
))

= φ
∂(So + Sg)

∂t
−

∑
α=o,w

(
∇ ·

(
krα

µα
K∇(p− ραgh)

))

= φ
∂1
∂t
−

∑
α=o,w

(
∇ ·

(
krα

µα
K∇(p− ραgh)

))

= −
∑

α=o,w

(
∇ ·

(
krα

µα
K∇(p− ραgh)

))
.

Putting these together gives the following hyperbolic-elliptic system of equations

−
∑

α=o,w

(∇ · (λαK∇(p− ραgh))) = 0, (2.6)

φ
∂cα

∂t
−∇ · (ραλαK∇(p− ραgh)) = 0, (2.7)
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along with the closure relations

cα = ραSα, 1 = Sg + So,

µα = µα(Sα), krα = krα(Sα),

λα =
krα

µα
,

where λα is referred to as the mobility of phase α. We refer to this model as the nonlinear model

throughout the thesis.

2.4 Fractional Flow Versus Darcy-Based Form

Equation 2.7 can also be written in terms of the total velocity. If we define total velocity as

uT = −
∑

α=o,w

(λαK∇(p− ραgh)) ,

then Equation 2.7 can be written as

φ
∂cα

∂t
+∇ · (ραfα (uT −K∇ ((ρα − ρβ 6=α) gh)λβ 6=α)) = 0, (2.8)

where the fractional flow function fα is defined as

fα =
λα

λo + λw
.

We refer to the transport equation written as Equation 2.7 as the Darcy form of the equation

and when written as Equation 2.8 as the fractional flow form. For the methods developed in chapter

4 we will need our transport equations to be of the form

∂c

∂t
+∇ ·

(
ζ(c)

(
σx

σx

))
= q(c), (2.9)

where σx and σy are independent of c, or at least can be kept fixed during the transport solve.

Hence the fluxes are linear in ζ(c). Both the Darcy and fractional flow forms can be written in this

manner when there are no gravitational forces, but when gravitational effects are included this is not

possible with the fractional flow formulation. To understand this, consider a vertical reservoir where

the gravitational force acts in the y-direction and there is no gravitational force in the x-direction.
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In Darcy form the transport equation becomes

Ct,α +∇ ·
(

λα

(
∂
∂x (p)

∂
∂y (p− ραgh)

))
= q(c),

and in fractional flow form this would be

Ct,α +∇ ·
(

ραfα

(
UT,1

UT,2 − γ

))
= q(c),

where γ = K(ρα − ρβ 6=α)g ∂h
∂y λβ 6=α. Since γ depends on C, through λβ , the fractional flow form is

not of the form of Equation 2.9 whereas the Darcy form is. In chapters 3 and 5 we will use the

fractional flow form since we will be neglecting gravity and using a miscible model which will make

the equations linear in concentration (see below). In chapter 6 we will use the Darcy form since we

will consider gravitational effects as well as more general mobility functions.

2.5 (Partially) Miscible Model

An important model used in this work is the Todd and Longstaff (1972) model for partially miscible

flow. In this model the relative permeabilities are linear in the saturations, krα = Sα, and the

viscosities also depends on the saturations. The effective viscosity is

µe,α = µ1−χ
α µχ

m,

µm =

(
Sg

µ
1/4
g

+
So

µ
1/4
o

)−4

,

where χ is a mixing parameter giving the level of miscibility and µα is the immiscible phase viscosity.

When χ = 1 the displacement is miscible, and we refer to it as the miscible model.

In chapters 3 and 5 we will use the miscible model without gravity written in the fractional flow

form as

0 = −∇ · K

µe,g(Sg)
∇p ≡ ∇ · u, (2.10)

0 = φ
∂cg

∂t
+∇ · (cgu) , (2.11)

where the first equation is an incompressible flow constraint and the second a scalar advection

equation.

In chapter 6 we will use the partially miscible model in Darcy form with Koval’s (1963) value for
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χ,

χ = 1− 4
ln(0.78 + 0.22M1/4)

ln(M1/4)
, (2.12)

where M = µg/µo. One of the interesting features of this model is that the oil mobility function,

λo(S) = kro(S)/µe,o(S), can have a stationary point, λ′o(S) = 0, if M > 625/256 ≈ 2.44 at

So =
M1/4

5
(
M1/4 − 1

) .

For this region the gas mobility function is convex.

An important feature of this model is that it has a theoretical fluid instability. Hence pertur-

bations in the displacement give rise to viscous fingering. It has been previously shown by Tan

and Homsy (1997) that the strength of the instability is a function of both the mobility ratio and

the amount of diffusion in the model. Riaz and Meiburg (2004) showed that if tensor diffusion is

considered, the transverse, or crosswind, diffusion largely controls finger formation whereas longi-

tudinal, or streamline, diffusion controls finger growth. The above mentioned work only considers

physical diffusion models, but in this work we assume that the numerical diffusion is much larger

than the physical diffusion so the structure of the numerical diffusion tensor will be an important

consideration in future chapters.

2.6 Finite Volume Discretization

The methods developed in this dissertation largely deal with the hyperbolic transport discretization,

though modification to the transport discretization also influences the elliptic pressure discretization.

The discretization principle used throughout this work is the finite volume methodology. Here we

discuss the integral form of a scalar hyperbolic equation and the implications for the discretization.

Consider the two-dimensional scalar hyperbolic equation,

ct +∇ ·
(

f(c)

g(c)

)
= q(c),

where f(c) and g(c) are hyperbolic fluxes in the x and y directions, respectively, and q(c) is the

source term. The variable c is the independent scalar quantity of interest, which we will call mass.

Assuming that we have a grid defined by control volumes Ωi with volumes Vi we define the average

mass in a control volume Ωi at time tn as

Cn
i =

1
Vi

∫∫∫

Ωi

c(x, tn) dV. (2.13)

We then introduce the conservative form by spatial integration over the grid cell, temporal integration
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from time tn to tn+1, and scaling by 1/Vi. This gives

1
Vi

tn+1∫

tn

∫∫∫

Ωi

[
c

∂t
+∇ ·

(
f(c)

g(c)

)
− q(c)

]
dΩ dt = 0.

Assuming that the control volumes do not change with time, we can use the Fundamental Theorem

of Calculus along with the divergence theorem so that the average mass in a cell is now evolved by

Cn+1
i = Cn

i −
∆t

Vi

∑

j∈neigh{i}
Fn

i,j +
∆t

Vi
Qn

i , (2.14)

where neigh{i} is the set of neighboring cells to cell i and Qn
i is the integrated source term

Qn
i =

tn+1∫

tn

∫∫∫

Ωi

q(c) dV dt.

The mass flux between Ωi and Ωj is

Fi,j =

tn+1∫

tn

∫∫

∂Ωi,j

(
f(c)

g(c)

)
· n̂i,j ds dt,

where ∂Ωi,j is the face between Ωi and Ωj with the unit normal n̂i,j pointing from Ωi to Ωj . The

crux of any finite volume method is the determination of the mass flux integral, called a numerical

flux when approximated. Clearly a requirement for the scheme to be conservative is that

Fi,j = −Fj,i.

In most of this thesis the only gridding methodology used is Cartesian. For a Cartesian grid the

control volumes generally have cell centers (xi, yj) with horizontal and vertical extents ∆x and ∆y,

respectively. The control volumes are then labeled as Ωi,j and a point (x, y) is in control volume

Ωi,j if x ∈ xi ±∆x/2 and y ∈ yj ±∆y/2. We generally refer to the horizontal (west-east) fluxes as

Fi±1/2,j and vertical (south-north) fluxes as Gi,j±1/2.



Chapter 3

Near-Well, Early-Time Effects and

Solution Coupling Methods

As noted previously, in adverse mobility ratio flows, µo > µg, grid orientation effect (GOE) arises

due to numerical errors triggering a physical instability. An important consideration is the imple-

mentation of the numerical scheme in the near-well region and the numerical treatment of the well.

As we will show, this can have a significant effect on the evolution of these physically unstable flows.

A simple conceptual picture illustrates this concept. Figure 3.1 shows the initial conditions for

two different Cartesian grids oriented at different angles with respect to the principle flow direction

unfolded onto a radial grid (see section 3.1). The dotted curve in the figure shows the expected front

near the injection well for a homogeneous system. In the radial grid system, it is clear that if the

initial flow around the well is different for the two grids, hence the evolution of the instability will

be different. Of course, at later times, the interaction of the flow paths will change the evolution of

the instability from the simple picture shown here.

This concept leads us into the thrust of this chapter. We seek to create a method that reduces

or removes the numerical perturbations caused by the inlet conditions and the rotational dependent

terms in the numerical scheme to ensure that effects of the physical instability are not masked by

numerical effects. Instead we expect in a real simulation that the details of the permeability field

near the well will control the evolution of the instabilities rather than the numerical issues. The

methods developed here, though motivated by the desire to alleviate the grid orientation effect, have

wider applicability in many near-well and solution coupling problems.

16
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Figure 3.1: Effective initial conditions after two time steps for an explicit scheme on diagonal and
parallel grids

In this chapter we will exclusively consider the miscible model in the fractional flow form,

0 = −∇ · K

µe,g(Sg)
∇p ≡ ∇ · u, (3.1)

0 = φ
∂cg

∂t
+∇ · (cgu) , (3.2)

as was derived in Equations 2.10 and 2.11. Since there are no gravitational effects, the equations do

not change character if we assume that ρg = ρo = 1 and thus let cg = Sg. Since So = 1 − Sg = co

we let c ≡ cg and can recover co = 1− c = 1− cg when needed.

3.1 Quarter Five-spot Problem

We briefly present the quarter five-spot model which will be used throughout this work as a test

problem for GOE. There are two principle domains of symmetry for this problem: the diagonal

domain in which the mean flow (between the wells) is diagonal to the grid lines, and the parallel

domain in which the mean flow is parallel to the grid lines.

By symmetry, the domain boundary, indicated by the dotted line in Figure 3.2, is a no-flow

boundary. Care must be taken when handling this boundary condition, as improper handling can

mask the effects of the numerics. For the diagonal domain the wells are in cells (1, 1) and (N,N) and

for the parallel domain the wells are in cells (1, 1), (1, N), (N, 1), and (N, N), as shown in Figure

3.2. With this placement of the wells, the problem is symmetric around the center of the border

cells. Therefore, the no-flow boundary is not in fact the outer edge of the domain but rather the

line passing through the cell centers. This implies that the proper way to handle the boundary is

with ghost cells C0,j = C2,j , CN+1,j = CN−1,j , Ci,0 = Ci,2, and Ci,N+1 = Ci,N−1. The same ghost
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Figure 3.2: Periodically repeating 5 spot pattern with two quarter five-spot domains

cell framework is used for solving the pressure equation.

3.2 Shubin and Bell Family of Discretizations

The discretization method for transport and pressure that we adopt in this chapter is the variable

nine-point sequential method developed and discussed in Shubin and Bell (1984). Defining the

velocities on the grid as

un
i+1/2,j =

(
K

µ

)n

i+1/2,j

pn
i+1,j − pi,j

∆x
,

vn
i,j+1/2 =

(
K

µ

)n

i,j+1/2

pn
i,j+1 − pi,j

∆x
.

Equation 3.1 is discretized as

(I + βδ2
y)

δx

∆x
ui,j + (I + βδ2

x)
δy

∆y
vi,j = qi,j ,

where δxfi,j = fi+1/2,j − fi−1/2,j and δ2
xfi,j = fi+1,j − 2fi,j − fi−1,j , and similarly for δy and δ2

y.

The parameter β ∈ [0, 1/2] controls the influence of the cross flow in the scheme. With β = 0 this

is the standard five-point Laplacian discretization. In the homogeneous case, β = 1/12 leads to the

standard fourth order, nine-point discretization of the Laplacian (Strikwerda, 2004).
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These velocities are then used to solve Equation 3.2 via the implicit discretization

ĉn+1
i,j qi,j = (3.3)

cn+1
i,j − cn

i,j

∆t
+

{
(I + 2βδ̄2

y)
δx

∆x
(ui,jc

∗
i,j) + (I + 2βδ̄2

x)
δy

∆y
(vi,jc

∗
i,j)

}

− δx

∆x

(
2βd11

i,j+1/2

δx

∆x
c∗i,j+1/2 + (1− 2β)d11

i,j

δx

∆x
c∗i,j + 2βd11

i,j−1/2

δx

∆x
c∗i,j−1/2

)

− δy

∆y

(
2βd22

i+1/2,j

δy

∆y
c∗i+1/2,j + (1− 2β)d22

i,j

δy

∆y
c∗i,j + 2βd22

i−1/2,j

δy

∆y
c∗i−1/2,j

)

− δx

∆x

(
d12

i,j

δy

∆y
c∗i,j

)

− δy

∆y

(
d21

i,j

δx

∆x
c∗i,j

)
,

where C∗i,j can either be taken explicitly or implicitly and for smoothness, a numerical diffusion

tensor has been added,

Di,j =

[
d11

i,j d12
i,j

d21
i,j d22

i,j

]
,

reducing the order of the scheme from second to first order. In Equation 3.3 δ̄2
xfi,j = fi+1/2,j −

2fi,j + fi−1/2,j , similarly for δ̄2
y. Averaging is used to interpolate the concentrations and velocities

where not already defined,

ci+1/2,j =
1
2
(ci,j + ci+1,j),

ci,j+1/2 =
1
2
(ci,j + ci,j+1),

ci+1/2,j+1/2 =
1
4
(ci,j + ci+1,j + ci,j+1 + ci+1,j+1),

ui+1/2,j+1/2 =
1
2
(ui+1/2,j + ui+1/2,j+1),

ui,j+1/2 =
1
4
(ui+1/2,j + ui+1/2,j+1 + ui−1/2,j + ui−1/2,j+1),

vi+1/2,j+1/2 =
1
2
(vi,j+1/2 + vi+1,j+1/2),

vi+1/2,j =
1
4
(vi,j+1/2 + vi+1,j+1/2 + vi,j−1/2 + vi+1,j−1/2).

We control the time step with

dt = α∆x/max(max
i,j

(|ui+1/2,j |), max
i,j

(|vi,j+1/2|)),

where α is the CFL restriction. When the method is used implicitly there is no restriction on α,

though we use α = 1 so as to control the amount of longitudinal diffusion. For explicit simulation
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we chose α = 1/2, which is the stability constraint for single point upstream weighting.

We remark that this Shubin and Bell scheme does not generate a divergence free velocity field

for β 6= 0. Therefore we use β = 0 in our development of the forcing method so that the methods

can be applied to more general transport discretizations based on divergence free velocity fields.

Various schemes with different truncation errors, stability properties, and levels of grid depen-

dence can be obtained through the use of different numerical diffusion terms. Particularly if we take

β = 0 and

Duw =

[
1
2∆x|u| 0

0 1
2∆y|v|

]
, (3.4)

the scheme becomes the standard single point upstream (SPU) scheme, or donor cell upwinding.

Shubin and Bell (1984) propose a numerical diffusion term inspired by the modified equations.

The modified equations are formed using Taylor expansion around the point c(xi, yj , t
n). We retain

the leading error terms and convert temporal derivatives to spatial derivatives using the original

governing equation (Equation 3.2). The modified equations can be interpreted as the nearby problem

that a scheme is solving to higher order. The modified equation for the transport discretization is

φ
∂c

∂t
+∇ · (uc) = ∇ ·

([
d11 d12

d21 d22

]
+

1
2
∆t

[
u2 uv

uv v2

])
∇c +O(∆t2, ∆x2,∆y2), (3.5)

where we must assume to do this analysis that (u, v)T = γ(cos θ, sin θ)T , that is, that the velocity

field is constant at an angle θ with respect to the grid and has a constant magnitude γ.

To interpret the numerically introduced diffusion tensor, it is more natural to transform Equation

3.5 to the streamline coordinate system which is aligned with the velocity field (Van Ransbeeck and

Hirsch, 1997; Roe and Sidilkover, 1992). Let this coordinate system be denoted by (s, n), where s is

the streamline coordinate aligned with the velocity field and n is the coordinate normal to the velocity

field. The transformation from Cartesian coordinates to streamline coordinates is accomplished with

the rotation matrix

Q =

[
cos θ sin θ

− sin θ cos θ

]
,

so that
[
s

n

]
= Q

[
x

y

]
, and

[
x

y

]
= QT

[
s

n

]
.

Applying this transform to Equation 3.5 the leading error term (Shubin and Bell, 1984; Roe and
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(a) Longitudinal diffusion (b) Transverse diffusion (c) Cross-term diffusion

Figure 3.3: Plots of the magnitude of the various diffusion coefficients scaled by 1/h (assuming that
∆x = ∆y = h) against angle of flow to the original grid coordinates. The ratio of ∆t/h is set to
unity.

Sidilkover, 1992) becomes

φct + γcs =
(

d11u2
α + (d12 + d21)uαvα + d22vα +

1
2
∆t

)

︸ ︷︷ ︸
dss

css

+
(
2(d22 − d11)uαvα + (d12 + d21)(u2

α + v2
α)

)
︸ ︷︷ ︸

dsn

csn (3.6)

+
(
d11v2

α − (d12 + d21)uαvα + d22uα

)
︸ ︷︷ ︸

dnn

cnn.

The coefficients dss, dnn can be interpreted as longitudinal and transverse diffusion, respectively,

and a nonzero mixed-term dsn indicates that there is some rotation of the tensor relative to the

streamline coordinates (Roe and Sidilkover, 1992; Van Ransbeeck and Hirsch, 1997).

From this analysis Shubin and Bell proposed a numerical diffusion that makes the discretization

rotationally invariant to second order regardless of the choice of β. It is given by

DSBAV =
max{∆x, ∆y}

2
√

u2 + v2




u2 + 1
2v2 1

2uv

1
2uv v2 + 1

2u2


 . (3.7)

We refer to this scheme as the Shubin and Bell artificial viscosity (SBAV). In Figure 3.3 we plot

the diffusion coefficients for SBAV and SPU. The plots show that for SBAV the numerical diffusion

is isotropic to first order. Also, Equation 3.6 reveals that as long as the numerical diffusion tensor

is chosen independent of the time step size, the time stepping error only affects the longitudinal

diffusion. Furthermore, Equation 3.6 is independent of β, which implies that SBAV is rotationally

invariant to first order for all values of β. Different β values affect the higher order error terms
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(a) 50× 50 SPU with β = 0 (b) 50× 50 SBAV with β = 1/12

(c) 50× 50 SBAV with β = 0 (d) 200× 200 SBAV with β = 1/12

Figure 3.4: SPU and SBAV comparison along with break down of SBAV under sufficient refinement.
M = 30 and CFL α = 1.

differently, with β = 1/12 resulting in a more isotropic second order error term than β = 0 (Shubin

and Bell, 1984).

Consider again the quarter five-spot problem discussed in the introduction. SBAV reduces the

grid orientation effect significantly as compared to SPU for both β = 0 and β = 1/12. However,

SBAV still breaks down under sufficient refinement as shown in Figure 3.4 and introduces grid and

scheme dependent numerical fingers despite having rotationally invariant first order error terms.

Since the transport equation is linear and the discretizations are stable and consistent, the

manifestation of the grid orientation effect must be attributed to the ill-posedness of the underlying

physical model for high Peclet number flows (Tan and Homsy, 1997). By this we naturally do

not mean that grid orientation effects are physical phenomena: the flow knows nothing of the

computational grid. Rather, grid dependent errors provide a trigger for the physical instability,



CHAPTER 3. NEAR-WELL, EARLY-TIME 23

(a) SBAV with β = 0 (b) SBAV with β = 1/12 (c) SPU

Figure 3.5: Early-time simulation shown at 0.025 PVI on a 50× 50 diagonal domain grid.

which is then amplified by the ill-posedness of the problem into the grid dependent behavior we see

in the grid orientation effect.

3.3 Early-Time and Near-Well

Since perturbations and errors made in early-time and near-well flow are amplified as the simulation

continues (Tan and Homsy, 1997; Brand et al., 1991), we seek to improve the robustness of numerical

schemes by alleviating or reducing the numerical disturbances introduced near the injection well

during the early stages of the injection process.

Evidence of the importance of early-time and near-well flow is given in Figures 3.5(a) and 3.5(b).

The figures show the simulated flow at 0.025 pore volumes injected (PVI) with SBAV for β = 0 and

β = 1/12, respectively. The simulations for β = 0 show a flattened fluid front and a bias of the flow

along the principal grid directions. However, the scheme for β = 1/12 preserves the expected radial

nature of the front around the well. We also show early-time and near-well solutions for SPU in

Figure 3.5(c). Both SBAV with β = 0 and SPU lead to the formation of numerical fingers in the

early stages of the injection process near the injection well.

3.3.1 Near-Well Results

To investigate the impact of the near-well region, we apply the SBAV scheme with β = 1/12 to the

10 × 10 grid cell square around the injection well and transition to the less grid dependent SBAV

with β = 0 or the SPU scheme away from the well. The simulations are run to 0.4 PVI with a

mobility ratio of M = 30 on the diagonal quarter five-spot problem. The results for switching to
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(a) SBAV with β = 0 refer-
ence solution

(b) SPU reference solution

(c) SBAV with β = 0 in the
interior

(d) SPU in the interior

(e) SBAV with β = 0 after
early-time

(f) SPU after early-time

Figure 3.6: Reference solutions for the simulations are given as black contour lines. All run to 0.4
PVI on a 50× 50 diagonal domain grid.
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SBAV are shown in Figure 3.6(c) and SPU in Figure 3.6(d). The reference solution, computed with

SBAV and β = 1/12 in the entire domain, is given in the background of each figure as black contour

lines. Figures 3.6(a) and 3.6(b) provide reference solutions generated with SBAV with β = 0 and

SPU, respectively, with no special handling near the injection well.

As can be seen in these figures, a change in the handling of flow around the injection well greatly

affect the shape of the resulting front regardless of the interior scheme used. SPU still introduces

two non-physical grid aligned numerical fingers, but the magnitude of these fingers is reduced. Also,

a third finger is introduced in the solution front, which is not aligned with the grid, but rather

points in the direction of the producing well. The results are considerably better when SBAV is

used. Then, only a few grid blocks around the well are needed to essentially match the β = 1/12

SBAV reference solution. Similar results can be observed on the parallel domain.

3.3.2 Early-Time

To explore the early-time effects, we use SBAV with β = 1/12 to initialize the flow up to time

tc = 0.025 PVI, and switch to β = 0 for the remainder of the simulation. This is equivalent to

starting the computation with a different initial condition. Again we take as final time 0.4 PVI,

and a mobility ratio of M = 30. Results for SBAV and SPU are provided in Figures 3.6(e) and

3.6(f) respectively. The SBAV with β = 1/12 reference solution is shown as black contours as is the

modified initial condition.

Once again the results suggest that the handling of the injection well boundary conditions is

crucial to properly capture the front. SPU still displays some grid dependencies, but the solutions

are greatly improved. SBAV captures the proper shape of the front with only a slightly modified

initial condition. These results strongly suggest that the early-time perturbations have a stronger

effect on the solution than the later time flow and that boundary conditions need to be treated with

great care in adverse mobility simulation. Again similar results were seen on the parallel domain.

3.4 Forcing Methods

The strong effects of early-time and near-well flow on the simulation results motivate the idea of

forcing a near-well solution that is derived from an analytical solution or fine scale simulation.

This should be done in a manner that minimizes grid dependent errors in the transfer. It is also

desirable that this process adds little to the computational complexity of the problem and is easily

implemented into existing simulators. The methods developed in the remainder of this chapter,

though motivated by the desire to alleviate the grid orientation effect, have wider applicability in

many near-well and solution coupling problems.
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From a mathematical standpoint we desire to modify the original system of equations,

−∇ · K(x, y)
µ(c)

∇p = ∇ · u = q,(x, y, t) ∈ Ω× (0, T ),

φ
∂c

∂t
+∇ · (uc) = ĉq,(x, y, t) ∈ Ω× (0, T ),

and instead solve

−∇ · K(x, y)
µ(c)

∇p = ∇ · u = q, (x, y, t) ∈ Ω× (0, T ), (3.8)

φ
∂c

∂t
+∇ · (uc) = ĉq, (x, y, t) ∈ Ω× (0, T ),

subject to u ≡ ũ, (x, y, t) ∈ Γ× (0, T ),

subject to c ≡ c̃, (x, y, t) ∈ Γ× (0, T ),

where Γ defines the near-well region, and c̃ and ũ are the analytic solutions for the near-well region.

We also note here that this special treatment is only applied to the injection well.

We assume that the near-well solution is a radial flow solution governed by

∂

∂r
(rur) +

∂vθ

∂θ
= 0, (3.9)

∂c

∂t
+

∂

∂r
(urrc) +

1
r

∂

∂θ
(vθc) =

1
Pe

[
1
r

∂

∂

(
r
∂c

∂r

)
+

1
r2

∂2c

∂θ2

]
,

where Pe = q/D, q is the injection rate, and D is the scalar diffusion coefficient. Exploiting the

necessary radial symmetry, this admits the following base state axisymmetric solution (Tan and

Homsy, 1997)

ur =
1

2πr
, (3.10)

vθ = 0,

c =
1− ∫ η

0
s(Pe/2π−1) exp(−s2/2) ds∫∞

0
s(Pe/2π−1) exp(−s2/2) ds

,

where

η = r

(
Pe

2t

)1/2

.

The above concentration equation can be integrated and restated as

c(r, t) =
Γ

[
Pe
4π , r2 Pe

4t

]

Γ
[

Pe
4π

] ,
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where

Γ(a, x) =
∫ ∞

x

sa−1 exp(−s) ds,

and

Γ(a) =
∫ ∞

0

sa−1 exp(−s) ds.

In the original Cartesian coordinate system Equation 3.10 becomes

ũ =
x

2π(x2 + y2)
, (3.11)

ṽ =
y

2π(x2 + y2)
,

c̃ =
Γ

[
Pe
4π , (x2 + y2)Pe

4t

]

Γ
[

Pe
4π

] .

We have left the Peclet number in these solutions, even though we do not explicitly model

physical diffusion in our simulations, for two reasons. First, if we set the Peclet number to ∞ (the

zero diffusion limit) the displacement is piston-like which is not realistic since the physical solution

will have diffusion. Second, and more importantly, for most applications near-well solutions result

from fine-scale numerical simulations which will exhibit some numerical diffusion. The numerical

Peclet number of the fine-scale model will be larger than the numerical Peclet number of the coarser

background grid, hence we choose the Peclet number such that Penum < Pe = 400 < ∞.

3.4.1 Well-Sponge

The first method we discuss is the well-sponge, which is based on sponge methods developed in

computational acoustics for enforcing boundary conditions (Bodony, 2006). In the well-sponge

formulation Equations 3.8 become

−∇ · K(x, y)
µ(c)

∇p = ∇ · u = −σ(r)(p− p̃) + q, (x, y, t) ∈ Ω× (0, T ),

φ
∂c

∂t
+∇ · (uc) = −σ(r)(c− c̃) + ĉq, (x, y, t) ∈ Ω× (0, T ),

where σ(r) is a penalty function, which is large near the well and decays away from the well. This

forces p = p̃ and c = c̃ in the near-well region. Bodony (2006) suggests using an exponential penalty

function

σ(r) =

{
σmax if 0 ≤ r ≤ r0

σmax exp(−γ(r − r0)2) if r0 ≤ r
, (3.12)

where σmax and γ are parameters controlling the strength of the sponge and the size of the transition

zone, respectively, and r0 is the size of the radial region in which we desire to enforce radial flow. In
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our study we have used σmax = 105 and γ = 104. We have also tested a hard transition where

σ(r) =

{
σmax if r ≤ r0

0 if r > r0

,

and a transition involving the tanh function. All these well-sponge functions show similar results

and all are non-conservative as discussed below.

We can write these equations in finite volume form (see section 2.6) as

Cn+1
ij = Cn

ij −
∆t

∆x

[
Fi+1/2,j − Fi−1/2,j

]− ∆t

∆y

[
Gi,j+1/2 −Gi,j−1/2

]

− 1
∆x∆y

∫ tn+1

tn

(∫∫

Ωij

σ(r)(c− c̃)dV

)
dt,

where

Cn
i,j =

1
∆x∆y

∫∫

Ωij

c(x, y, tn) dV,

Fi+1/2,j =
1

∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

u(xi+1/2, y, t)c(xi+1/2, y, t) dy dt,

Gi,j+1/2 =
1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

v(x, yj+1/2, t)c(x, yj+1/2, t) dx dt.

Numerically we approximate Fi+1/2,j ≈ Fi+1/2,j and Gi,j+1/2 ≈ Gi,j+1/2, where F and G are the

numerical fluxes from the scheme used.

We write the pressure equation as

1
∆x

[
F̃i+1/2,j − F̃i−1/2,j

]
− 1

∆y

[
G̃i,j+1/2 − G̃i,j−1/2

]
=

1
∆x∆y

∫∫

Ωij

σ(r)(p− p̃) ds, (3.13)

where

F̃i+1/2,j =
1

∆y

∫ yj+1/2

yj−1/2

u ds,

G̃i,j+1/2 =
1

∆y

∫ xi+1/2

xi−1/2

v ds,

and u and v are the numerically determined velocities. This method requires the velocity field to be

divergence free, and hence necessitates β = 0 in Equation 3.3.

To evaluate the volume integrals, we assume that the unknown variables are piecewise constant

across the cells. Then,
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1
∆x∆y

∫ tn+1

tn

∫∫

Ωij

σ(r)c dV dt ≈ ∆t

∆x∆y
Cn+1

i,j

∫∫

Ωij

σ(r) dV,

and similarly

1
∆x∆y

∫∫

Ωij

σ(r)p dV ≈ 1
∆x∆y

Pi,j

∫∫

Ωij

σ(r) dV.

The remaining volume integrals need to be evaluated only once at the beginning of the simulation.

We evaluate the exact solution c̃ and p̃ implicitly. For c̃, this gives

1
∆x∆y

∫ tn+1

tn

∫∫

Ωij

σ(r)c̃ dV dt ≈ ∆t

∆x∆y

∫∫

Ωij

σ(r)c̃(r, tn+1) dV dt,

where we use five-point Gaussian quadrature in both spatial directions. This integral must be

evaluated at each time step, but only in the few grid blocks around the injection well where the

well-sponge is non-zero. Once the front has passed completely through the sponge, the integral is

constant in time so no additional computations are necessary. A similar approach is used for the

integral containing p̃.

3.4.2 Local Embedding Through Immersed Structures (LETIS)

The well-sponge method is not fully conservative: numerical experiments show that as the sponge

passes through the transition region, extra fluid is added to the system; the scheme is conservative

before the front has reached the edge of the sponge and after it has completely passed through

the sponge. The non-conservative behavior can be understood by considering two cells, (i, j) and

(i+1, j), where cell (i, j) is completely inside the sponge and cell (i+1, j) is in the transition region

of the sponge. If the numerical flux, Fi+1/2,j , is greater than the flux of the forced solution for this

face more volume will enter cell (i + 1, j) than will have left cell (i, j) after the correction of the

sponge is applied, thus adding volume to the system. The effect is reduced if the Peclet number of

the forced solution and the numerical scheme are similar, because then the numerical and near-well

fluxes are in closer agreement for the transition cells.

When near-well solutions are provided by fine-scale simulations, it cannot be guaranteed that

the Peclet numbers are similar. We therefore seek to formulate a fully conservative method. We can

achieve this by forcing the fluxes rather than the solutions in the near-well region. This approach is

motivated by the Immersed Boundary Method (IBM) commonly used in the area of computational

fluid dynamics (Mittal and Iaccarino, 2005). In the context of our simulations, we refer to it as

Local Embedding Through Immersed Structures (LETIS).

Without loss of generality we will assume, for simplicity, that the near-well region is defined by

a circle of radius rnw around the injection well. Consider the grid shown in Figure 3.7 in which the



CHAPTER 3. NEAR-WELL, EARLY-TIME 30

Figure 3.7: Example of a near-well region LETIS grid

gray region is the near-well region, Γ in Equation 3.8. Consider the center cell, (i, j), with faces

(i+1/2, j), (i−1/2, j), (i, j+1/2), and (i, j−1/2). We define parameters αi+1/2,j , αi−1/2,j , αi,j+1/2,

and αi,j−1/2 as the fraction of the face within the near-well region. In the case shown this gives

αi+1/2,j = 0.38, αi−1/2,j = 0.75,

αi,j+1/2 = 0, αi,j−1/2 = 1.

Note that since this approach we are forcing fluxes and do not have solid boundaries we do not end

up with the small cell problem as is common Immersed Boundary Methods. We can have α values

which are close to 0 or 1, though not necessary for stability we found it lead to slightly improved

results to correct the α so that

α =





0, if α < αmin

1, if α > 1− αmin

α, otherwise

,

where αmin = 0.85. Computationally we have found that the LETIS method has no impact on the

stability or the time step selection, though this is a results which warrants further exploration in

future work (see chapter 7).

To ensure that the velocity field is divergence free, which is important for consistency and stability
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of most of the numerical transport schemes, we require that in each cell

ui+1/2,j − ui−1/2,j + vi,j+1/2 − vi,j−1/2 = 0,

assuming the faces have the same length. We denote the face averaged, near-well normal velocities

as ũ and ṽ. Assuming radial flow in the near-well region, these are given by

ũi+1/2,j =
1

∆y

∫ yj+1/2

yj−1/2

xi+1/2

2π(x2
i+1/2 + y2

) dy

=
1

2πh

(
arctan

(
yj + 1/2
xi + 1/2

)
− arctan

(
yj − 1/2
xi + 1/2

))
,

and

ṽi,j+1/2 =
1

2πh

(
arctan

(
xi + 1/2
yj + 1/2

)
− arctan

(
xi − 1/2
yj + 1/2

))
.

For simplicity we define the numerical face averaged normal velocities, ūi+1/2,j and v̄i,j+1/2, by a

two-sided pressure difference with Darcy’s law, so that

ūi+1/2,j = −
(

k

µ

)

i+1/2,j

(pi+1,j − pi,j),

and

v̄i,j+1/2 = −
(

k

µ

)

i,j+1/2

(pi,j+1 − pi,j).

There are other ways to define the velocities, but our tests have shown that this choice works well

for the problems considered. The divergence free velocity constraint becomes

αi+1/2,j ũi+1/2,j + (1− αi+1/2,j)ūi+1/2,j

− αi−1/2,j ũi−1/2,j − (1− αi−1/2,j)ūi+1/2,j

+ αi,j+1/2ṽi,j+1/2 + (1− αi,j+1/2)v̄i,j+1/2

− αi,j−1/2ṽi,j−1/2 − (1− αi,j−1/2)v̄i,j+1/2

= 0.

The above linear system of equations determines pressure in all cells that have one or more faces

that are partially or completely within the near-well region. The divergence free face velocities are

given by

ui+1/2,j = αi+1/2,j ũi+1/2,j + (1− αi+1/2,j)ūi+1/2,j ,

vi,j+1/2 = αi,j+1/2ṽi,j+1/2 + (1− αi,j+1/2)v̄i,j+1/2.
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If α = 0 for a given face, i.e. a face is completely within the near-well region, there will not be a

numerical velocity for this face, and the face velocity is just the forced velocity.

For the transport equation we use the same α values and modify the standard finite volume

formulation,

Cn+1
ij = Cn

i,j −
∆t

h
[Fi+1/2,j − Fi−1/2,j + Gi,j+1/2 −Gi,j−1/2],

as

Cn+1
ij = Cn

i,j −
∆t

h
[αi+1/2,jF̃i+1/2,j + (1− αi+1/2,j)Fi+1/2,j

−αi−1/2,jF̃i−1/2,j − (1− αi−1/2,j)Fi−1/2,j

+αi,j+1/2G̃i,j+1/2 + (1− αi,j+1/2)Gi,j+1/2

−αi,j−1/2G̃i,j−1/2 − (1− αi,j−1/2)Gi,j−1/2],

where F̃ and G̃ are the near-well solution fluxes and F and G are the numerical fluxes.

Assuming radial flow governed by Equation 3.9 with analytic solution Equation 3.11, the near-

well fluxes are given by

F̃i+1/2,j =
1
h2

∫ tn+1

tn

∫ yj+1/2

yj−1/2

(
xi+1/2

2π(x2
i+1/2 + y2)

c̃(xi+1/2, y, t)− 1
Pe

∂c̃

∂x

∣∣∣∣
x=xi+1/2

)
dydt,

G̃i,j+1/2 =
1
h2

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(
yj+1/2

2π(x2 + y2
j+1/2)

c̃(x, yj+1/2, t)−
1

Pe

∂c̃

∂y

∣∣∣∣
y=yj+1/2

)
dxdt.

We integrate the diffusive portion of the flux exactly over time. For the remainder of the integral

we use numerical quadrature in MATLAB, which is a low order method using an adaptive recursive

Simpson’s rule (similar results have been observed using the higher order adaptive Gauss/Lobatto

quadrature rule). We also note here that we use a fully explicit version of Equation 3.3 with the

LETIS method. An implicit version does not change the above formulation, except that a linear

system solve is required and hence the computation is more expensive.

We set β = 0 to ensure that the method renders a divergence free velocity field, as is necessary

for LETIS. Our finite volume interpretation of Equation 3.3 for β = 0 is

Fi+1/2,j = ui+1/2,j

(
ci+1,j + ci,j

2

)

− 1
h

[
d11

i+1/2,j(ci+1,j − ci,j) +
1
4
d12

i+1/2,j(ci+1,j+1 + ci,j+1 − ci+1,j−1 − ci,j−1)
]

,

Gi,j+1/2 = vi,j+1/2

(
ci,j+1 + ci,j

2

)

− 1
h

[
d22

i,j+1/2(ci,j+1 − ci,j) +
1
4
d21

i,j+1/2(ci+1,j+1 + ci+1,j − ci−1,j+1 − ci−1,j)
]

.
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3.5 Assessing Grid Orientation Effects

Throughout this thesis various measures are used to assess the reduction in GOE by the developed

methods. The first measure is a qualitative look at the front shape. This is the measure used in

Figure 1.1. Unfortunately we have no analytic solution for these adverse mobility ratio flow problems.

We can use physical reasoning to say qualitatively what the shape of the front should be, namely in

the case of the quarter five-spot problem, we know that there should only be a single finger forming

between in the injector and producer. Furthermore, a grid insensitive numerical method should

produce the same solution regardless of the grid used. These sorts of qualitative statements hold for

the homogeneous test problems in this work, but for heterogeneous problems, the rock properties

determine preferential flow paths which may or may not be aligned with the grid. Heterogeneity

also has the effect of reducing some of the bias in the numerical methods, especially as the flow

paths become stronger. Hence for these problems in order to see the effects of the numerical errors,

we will need to consider an ensemble average of many solution realizations. If a sufficiently large

number of realizations is used, then the methods which are less grid sensitive will reveal this in the

averaged solution front.

The next class of comparisons used to assess GOE is production well data, that is, data about

the fluid present at the production wells at various times doing the simulation. The reason for

considering this is that for a real reservoir, this is one of the types of data that we can measure and

hence history match against. It is (almost) impossible, or at least prohibitively expensive, to actually

measure the shape of the displacement front in a real reservoir. We will consider two different types

of well data. The first type is for problems involving a single well (or set of identical wells). For

these problems we use production curves, which is simply the time integrated amount of fluid that

has been produced. For a grid insensitive method these curves should agree regardless of the type

of grid used. Going back to Figure 1.1 the diagonal grid will result in a much larger production

curve because oil will continue to be produced until the two fingers have broken through, whereas

for the parallel grid once the single finger breaks through production will largely flatten off since the

injected fluid will begin to be cycled (see Figure 3.10(b) for an example of this). The second class

of well data we use is for problems which have multiple wells which are the same distance to the

injector but not aligned with the same angles to the grid. For these tests we will instead look at

data which pertains to each of the wells separately, namely we will look at the type of fluid being

produced by each well. This type of data is called the water cut or gas to oil ratio depending on

whether the injected fluid is water or gas. For a problem that has two production wells which are

equidistant from the injection, these plots of the data for each of the wells should coincide if the

method is grid independent. We only use the well data as a measure of GOE for homogeneous test

problems.
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3.6 Numerical Results

Figure 3.8 shows results for the well-sponge and LETIS methods for a mobility ratio of 30 and a

grid density of 50× 50 on the Cartesian grid and 71× 71 on the parallel grid. The near-well radius

is 0.1. The boundary of the near-well region is indicated by the quarter circle around the injection

point. All simulations are shown at 0.4 pore volumes injected.

First we note, once again, that the unforced solutions in Figures 3.8(a) and 3.8(b) show strong

grid dependencies. The parallel grid solution breaks through much earlier than the diagonal grid

solution. The diagonal grid solution has split into two separate viscous fingers.

The well-sponge is very effective in reducing the grid orientation effect for SBAV with β = 0, as

evident from Figure 3.8(c). However, the results for SPU, given in Figure 3.8(d), are not desirable.

As shown before, SPU has much stronger directional diffusion and transport bias than SBAV, and

hence it is to be expected that due to the underlying physical instability there will still be some

grid orientation effects present. However, the extra two fingers on the diagonal SPU solution have

decreased in size and the parallel SPU solution has widened slightly.

We see similar results to the well-sponge for the LETIS method. The results for SBAV with

β = 0 are shown in Figure 3.8(e) and for SPU in Figure 3.8(f). The level of grid independence seen

in the LETIS method is comparable with that of the well-sponge method; the LETIS method has

the additional advantage of being conservative, which can be seen in Figure 3.9 which shows the

volume of injected fluid versus the pore volumes injected.

We compare the production curves for the different methods in Figure 3.10. The curves for the

well-sponge and LETIS are comparable with SBAV using β = 0. The physical instability of the

problem is still very pronounced for SPU.

Figure 3.11 compares how for a mobility ratio of 20, SBAV results vary with refinement for both

no forcing and the well-sponge. It is seen that the well-sponge method reduces the tendency of

the numerical errors to trigger the instability. Since the instability is not removed by the forcing

methods, the instability is triggered by numerical inaccuracies that appear at higher grid resolutions

outside of the near-well region.

As a final test, we consider a three well problem that has been used in a number of papers

as an alternative benchmark problem (Heinemann et al., 1991; Liu et al., 2007). The geometry

consists of one injection well and two equidistant production wells. One production well is placed

along one of the sets of grid lines, and the other is at 60◦ to it. Running simulations on this

configuration with SPU results in significantly earlier breakthrough along the grid direction (Liu

et al., 2007). Figures 3.12(a) and 3.12(b) show the saturation map and breakthrough curves for the

LETIS scheme compared with no forcing; both simulations use SBAV with β = 0. The saturation

fronts show significantly less grid bias for LETIS, and the breakthrough curves are much closer. In

the simulation shown, there are 34 horizontal grid blocks from the injector to well 1 and 17 horizontal

and 29 vertical grid blocks from the injector to well 2. Similar results are seen with the well-sponge
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(a) SBAV with no forcing (b) SPU with no forcing

(c) SBAV with well-sponge
forcing

(d) SPU with well-sponge
forcing

(e) SBAV with LETIS forcing (f) SPU with LETIS forcing

Figure 3.8: Comparison of different forcing methods. All the simulations are run with a 50 × 50
diagonal grid (filled contours) and a 71× 71 parallel grid (black contour lines). Mobility ratio is 30
and the near-well Peclet number of 400. The near-well region is rnw = 0.1.
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Figure 3.9: Volume of injected fluid in the reservoir versus pore volume injected. Exact conservation
corresponds to the black line, which is a line of slope one. These reservoir volumes are from SBAV
with a diagonal grid. Similar results are seen for all methods and grids.

method.
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(a) Comparison of recovery for different well handling methods using SBAV trans-
port method.
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(b) Comparison of recovery for different well handling methods using SPU trans-
port method.

Figure 3.10: Oil recovery of the various methods. The solid line of a given color is the diagonal grid
solution and the dashed line the parallel grid solution.
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(a) SBAV with no forcing
25× 25

(b) SBAV with no forcing
50× 50

(c) SBAV with no forcing
75× 75

(d) SBAV with no forcing
100× 100

(e) SBAV with well-
sponge forcing 25 × 25

(f) SBAV with well-
sponge forcing 50 × 50

(g) SBAV with well-
sponge forcing 75 × 75

(h) SBAV with well-
sponge forcing 100 × 100

Figure 3.11: Mobility ratio of 20 grid refinement study for no forcing and well-sponge. As can
be seen in these results, the well-sponge improves the stability region by extending the near-well
region. Break down is still seen since the instability has not been remove completely but lessened
in intensity.
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(a) saturation map

(b) breakthrough

Figure 3.12: Three well configuration test problem



Chapter 4

Multi-D Upstream Weighting

One of the advantages of SBAV, presented in chapter 3, is that it has an isotropic first order

error term. This results in drastic reductions in GOE over SPU even without the forcing. There

are however at least four drawbacks to SBAV which prevent it from being used in general purpose

simulation. First, the pressure and transport discretizations are tightly coupled through the β factor,

meaning that the method in its current form is not applicable to general pressure discretizations, such

as multi-point flux approximations (Aavatsmark, 2002; Edwards and Rogers, 1998). Second, it is not

clear how the method can be extended to general grids as the isotropic error term was developed for

Cartesian grids. Thirdly, the benefit of SBAV over SPU is drastically reduced when generalized to

heterogeneous permeability fields. For highly heterogeneous flow problems the averaging procedure

used in the method must be changed from arithmetic to harmonic averaging so as to not result in

diffusion into low permeability grid cells. This generalization reduces the impact of the diffusive

correction and causes the scheme to closely resemble SPU. Finally, the method is not positive

(meaning the updated solution is not a convex combination of the current solution). This property

is desirable when using first order discretization methods for scalar transport problems because it

guarantees a non-oscillatory concentration field. These shortcomings in SBAV lead to the next set

of work, the development of more robust multi-D methods for transport.

4.1 Modified Equations Analysis

We begin by analyzing upwind finite difference discretizations for the constant velocity scalar trans-

port equation
∂c(x, y, t)

∂t
+ u · ∇c(x, y, t) = 0, (4.1)

where u = (u, v)T is constant in space and time. The exact solution to this equation is given by

c(x, y, t) = c0(x − tu, y − tv), where c0(x, y) = c(x, y, t = 0) is the initial condition. We define

40
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Figure 4.1: The four most physically relevant points for an upwind scheme for u, v ≥ 0. The point
of interpolation is found by tracing back along the velocity directions for a time step ∆t.

the magnitude of the velocity as γ ≡ √
u2 + v2, and the angle of the velocity with respect to the

x-coordinate as θ ≡ arctan(u/v). With these definitions, the velocity field can be expressed as

u =

[
u

v

]
= γ

[
cos θ

sin θ

]
. (4.2)

For simplicity, we assume a uniform Cartesian grid with step size h in both spatial directions

and nodal grid values Cn
i,j ≈ c(xi ≡ ih, yj ≡ jh, tn ≡ n∆t). An explicit finite difference update for

Cn+1
i,j can be written in the general form as

Cn+1
i,j =

∑

k,l

βk,lC
n
i+k,j+l, (4.3)

with
∑

k,l βk,l = 1. A sufficient condition for stability is to require that the updated solution be a

convex combination of the previous solution (Roe and Sidilkover, 1992), that is,

βk,l ≥ 0. (4.4)

This, known as the positivity requirement, ensures that no new extrema are introduced in the

solution. It has been shown that such a linear, positive scheme can be at most first order accurate

(LeVeque, 2003; Deconinck and Koren, 1997). For convergence, the scheme must also be a consistent

discretization of 4.1, which positivity alone does not guarantee.

Assuming u, v ≥ 0 the four most physically relevant concentrations surrounding cell (i, j) are

{Cn
i,j , Cn

i−1,j , C
n
i,j−1, C

n
i−1,j−1} (see Figure 4.1). Following Roe and Sidilkover (1992), it can be shown

that there exists a single parameter family of consistent upwind schemes using these four points in
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Common Name κ Interpolation Time Step

Single Point
Upstream (SPU) u + v

Linear interpolation
∆t ≤ h

u+v

Weighting
on {Cn

i,j , Cn
i−1,j , Cn

i,j−1}

Narrow Scheme Linear interpolation
(N-Scheme) |u− v| on {Cn

i,j , Cn
i−1,j , Cn

i−1,j−1} if u ≥ v ∆t ≤ h
max(u,v)

(Roe and Sidilkover, 1992) or {Cn
i,j , Cn

i,j−1, Cn
i−1,j−1} if v ≥ u

Corner Transport
Upwinding (CTU) u + v − 2∆t

h uv
Bilinear interpolation on

∆t ≤ h
max(u,v)

(Colella, 1990)
{Cn

i,j , Cn
i−1,j , Cn

i,j−1, Cn
i−1,j−1}

Koren’s Scheme Other first
(1991)

(u2 + v2)/(u + v)
order interpolation

∆t ≤ h(u+v)
u2+uv+v2

Table 4.1: Comparison of single parameter κ for four well known numerical methods (Roe and
Sidilkover, 1992).

the form

Cn+1
i,j = Cn

i,j +
∆t

2h

[
(−u− v − κ)Cn

i,j + (u− v + κ)Cn
i−1,j (4.5)

+(u + v − κ)Cn
i−1,j−1 + (v − u + κ)Cn

i,j−1

]
,

where the variable κ is a function of u and can be understood as defining an interpolation scheme

on the four upwind points at the location (xi−∆t u, yj−∆t v). In section 4.6 we will see that these

schemes can be represented in conservative form, though there is no unique conservative formulation

for a given κ (Roe and Sidilkover, 1992). For these schemes, the nonzero βk,l in Equation 4.3 are

β0,0 = 1 +
∆t

2h
(−u− v − κ), β−1,0 =

∆t

2h
(u− v + κ),

β−1,−1 =
∆t

2h
(u + v − κ), β0,−1 =

∆t

2h
(−u + v + κ).

Positivity then requires that

|u− v| ≤ κ ≤ u + v, (4.6)

∆t ≤ 2h

u + v + κ
. (4.7)

The expression for κ for four common numerical discretizations and the corresponding time step

restrictions are given in Table 4.1. The Narrow scheme (N-scheme), so called because it depends

only on the “narrow” three points stencil Ci,j , Ci−1,j−1 and Ci−1,j if u ≥ v or Ci,j−1 if v ≥ u, has the

least restrictive time step according to Equation 4.7 and Single Point Upstream (SPU) weighting,
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also known as dimensional upwinding, the most restrictive. Although CTU is a popular scheme we

will not consider it further in this work since for this scheme, κ depends on ∆t Since κ depends

on ∆t for CTU it can reproduce the behavior of the other schemes for different time step sizes.

However, in practical porous media problems time step sizes are dictated by global considerations

and cannot be controlled locally. For this reason, CTU is not effective in eliminating GOE. For the

miscible five-spot problem show in Figure 3.2 CTU gives results very similar to SPU.

As in section 3.2 we use modified equation analysis to understand how the errors introduced by

the discretization affect the solution. For the family of schemes given by Equation 4.5, the modified

equations are given by

ct + ucx + vcy =
h

2
(
(u− λ cos2 θ)cxx + (v − λ sin2 θ)cyy + (u + v − κ− 2λ cos θ sin θ)cxy

)
+O(h2),

(4.8)

where λ = ∆tγ/h. Rotating the equations into the flow aligned coordinate system (s, n) gives the

modified equation

ct + γcs = γ
h

2
[sin θ + cos θ − κ̃ sin θ cos θ − λ]

︸ ︷︷ ︸
dss

css

+ γ
h

2
[κ̃ sin θ cos θ]

︸ ︷︷ ︸
dnn

cnn (4.9)

+ γ
h

2
[
cos θ − sin θ + κ̃(sin2 θ − cos2 θ)

]
︸ ︷︷ ︸

dsn

csn,

where κ̃ = κ/γ. The coefficients dss, dnn can be interpreted as longitudinal and transverse diffusion,

respectively, and a nonzero mixed-term dsn indicates that there is some rotation of the tensor relative

to the streamline coordinates (Roe and Sidilkover, 1992; Van Ransbeeck and Hirsch, 1997). Equation

4.9 implies that if κ is independent of ∆t then the time stepping error only affects the longitudinal

diffusion. κ(u, v) = 0 results in a non-positive scheme with no transverse diffusion.

From Equations 4.6 and 4.9 it can be seen that the N-scheme has minimal transverse diffusion for

the family of positive schemes, and SPU has maximal transverse diffusion. Plotting the magnitude

of the diffusion coefficients versus the angle of the flow vector with respect to the grid helps to

further assess the impact of the choice of κ. This is shown for SPU, the N-Scheme, and Koren’s

scheme in Figure 4.2. The plots clearly show that all three schemes have zero transverse diffusion

for flow that is aligned with the grid, and in addition, the N-scheme has zero transverse diffusion at

θ = π/4. The diffusion tensor of Koren’s scheme is flow aligned since dsn = 0 for all θ. For a fixed

time step SPU has the lowest longitudinal diffusion.

To further illustrate this behavior, a constant advection test is performed for SPU, the N-scheme,

and Koren’s scheme. Figure 4.3 displays the numerical results. Two time step criteria are tested: a
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Figure 4.2: The magnitude of diffusion coefficients in Equation 4.9 versus the angle of flow θ with
respect to the x-coordinate for SPU, the N-scheme, and Koren’s scheme. In these plots h = 1,
γ = 1. The longitudinal coefficient depends on λ/2. The dotted line is SPU, the solid line is Koren’s
scheme, and the dashed line is the N-scheme.

fixed time step of ∆t = 0.75
√

2h/2 (three quarters of the minimum maximal time step for SPU) and

three quarters the maximum time step for each angle, ∆t = 0.75(2h/(u+v+κ)). The domain is Ω =

(−1, 1)×(−1, 1) with 201×201 grid points, and the initial condition is c0(x, y) = exp(−150(x2+y2)).

The solution is computed until tmax = 0.8 using velocity field u = (cos θ, sin θ)T for each θ =

{0, π/10, π/4, 7π/20, 9π/20}. The exact solution is c(x, y, tmax) = c0(x − tmax cos θ, y − tmax sin θ),

the translation of the initial condition along the characteristic.

The results in Figure 4.3 confirm the findings of the modified equation analysis: SPU has the

smallest amount of longitudinal smearing for a fixed time step, the N-scheme the smallest amount

of transverse smearing regardless of the time step, and Koren’s scheme is always flow aligned.

Comparing the fixed time step plots, Figures 4.3(a) - 4.3(c), with the maximal time step plots,

Figures 4.3(d) - 4.3(f), shows that the change in time step mostly affects the longitudinal spreading.

The transverse smearing remains relatively unchanged as predicted by Equation 4.9. Additional

effects can be observed due to rotation and higher order terms which have been neglected in this

analysis.

The above analysis can be extended to general structured grids. For unstructured grids a local

analysis can be performed also, but global behavior is likely not predictable due to the changing

nature of the error from one grid cell to the next.

4.2 Monotonicity and Framework Considerations

The analysis to this point has been limited to the constant velocity scalar transport problem. The

schemes in the previous section can also be interpreted as finite volume methods. To robustly
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Figure 4.3: Constant advection tests for a Gaussian blob advected at different angles to the grid
for SPU, the N-scheme, and Koren’s scheme. Results for all angles are superimposed on the same
plot. The time step criterion is given under each plot and tmax = 0.8. Contours are shown for
c = 0.0, 0.1, . . . , 1.0.

and more easily extend these methods to general divergence free velocity fields and to nonlinear

equations, we will utilize a finite volume framework. In this section we show how a general family

of first order, truly multi-D finite volume schemes can be derived based on interaction regions. This

family of schemes contains both the single parameter family from section 4.1, as will be seen in the

next section, and also a wider class of schemes based on the full nine-point nearest neighbors stencil.

We develop the framework for a class of hyperbolic equations,

ct +∇ · (ζ(c)σ) = q(c) (4.10)

where ζ ′(c) ≥ 0 (an extension to more general ζ(c) is given in section 4.7) and we assume that σ is
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fixed during the transport solve. Both the miscible model in fractional flow form and the nonlinear

model with gravity in the Darcy form can be represented in this manner. Namely, for the miscible

model

ζ(C) = C, σ = − K

µ(C)
∇p = uT ,

hence the equation is a scalar transport equation. Though σ is not independent of C the total

velocity field will be held fixed during the transport solve so σ can be thought of as independent of

the transport solve. For the two phase model there will be a ζα(C) and σα for each phase,

ζα(C) = λ(C) =
kr,α(C)
µα(C)

,

σα = −K∇(p− ραgh).

Since we will require the discretization to be monotone only with respect to the phase being up-

dated, the monotone methods developed here for Equation 4.10 will still be applicable. This will be

discussed further in chapter 6. As noted in section 2.4 the fractional flow formulation could also be

represented in this manner if gravitational forces are not present, but with gravitational forces this

is not possible since σ would have to depend on C (see section 2.4). Throughout this chapter we

will call ζ(c) the mobility function, even though it may not be, and c will be referred to as the mass

variable.

Assume that we have a consistent discretization of Equation 4.10 of the form

Cn+1
i = Φn

i (Cn
1 , Cn

2 , . . . , Cn
N ).

The discretization is called monotone if (Crandall and Majda, 1980)

∂Cn+1
i

∂Cn
j

=
∂Φn

i (C1, C2, . . . , CN )
∂Cj

≥ 0, ∀j. (4.11)

where the arguments are taken in the range Ck ∈ (a, b) for all k with a and b being the lower and

upper bounds on the values that the mass variables can take. The schemes that we will consider

actually take a simpler form, in that they will be of the form

Cn+1
i = Cn

i −
∆t

Vi

∑

j

Φn
ijζ(C)n

j ,
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where Vi is the volume or area of cell i. Hence our methods will be monotone if

Φn
i,jζ

′(Cj) ≤ 0, for j 6= i,

ζ ′(Ci)
∆t

Vi
Φn

i,i ≤ 1,

hence we have the time step constraint

∆t ≤ Vi

Φn
i,i maxc∈(a,b) ζ ′(c)

, ∀ i.

In the case of scalar transport, where ζ(C) = C, then

Cn+1
i = Cn

i −
∆t

Vi

∑

j

Φn
ijC =

∑

j

βi,jC,

βi,j = −Φi,j , j 6= i,

βi,i = 1− Φi,i,

and one of the constraints imposed by consistency is that
∑

j βi,j = 1. The monotonicity constraints

become

Φn
i,j ≤ 0, for j 6= i,

∆t

Vi
Φn

i,i ≥ 1,

hence we have that βi,j ≥ 0 as in Equation 4.4. This shows that for scalar problems within this

methodology, monotonicity implies positivity.

We now define the general finite volume framework used for transport. Let Cn be the vector

of all the grid mass variables at time tn and σ be the vector of all the face based σ variables. The

numerical fluxes can be written as the vector

F = σ • [Rζ(C)] = σ • ζ̄, (4.12)

where R is a yet to be defined stencil matrix that defines face based mobility values ζ̄ from the

cell-based mobilities ζ(C). Component by component vector multiplication is denoted by •. If Div

is a divergence matrix, then our finite volume discretization can be written as

Cn+1 = Cn −∆tV −1
(
Div

(
σ • ζ̄

)−Qn
)

where V is a diagonal matrix of cell volumes and Qn is the vector of source terms.
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To maintain monotonicity, the coefficients that determine the fluxes are required to satisfy con-

straints. These constraints introduce a coupling in the flux calculations. This can be understood by

considering a 1-D example. Assume that we have a finite volume update for Cn+1
i given as

Cn+1
i = Cn

i −
∆t

h

(Fi+1/2 −Fi−1/2

)
.

We assume that Fi+1/2 and Fi−1/2 both have some dependence on Cn
j , for example Fi+1/2 is an

increasing function of Cn
j and Fi−1/2 a decreasing function. For monotonicity we need

∂Cn+1
i

∂Cn
j

= −∆t

h

(
∂Fi+1/2

∂Cn
j

− ∂Fi−1/2

∂Cn
j

)
≥ 0.

Since ∂Fi+1/2

∂Cn
j

> 0 and ∂Fi−1/2

∂Cn
j

< 0, it follows that the calculation of the fluxes is coupled. A similar

coupling would occur between Fi+3/2 and Fi+1/2 and so on. Hence, there is a potential global

coupling in the calculation of all the fluxes: modifying one flux can affect the monotonicity of other

cell updates. For SPU this coupling is also present but is manifest as a time step constraint, which

is the case for all schemes that only depend on direct neighbors. For multi-D schemes there are more

fluxes to consider, but the general concept is the same.

Resolving a global coupling is possible, but solving a large system of equations at each time

step is not desirable for explicit discretization of hyperbolic equations as they often require small

time steps for stability and/or accurate transient behavior and have a finite domain of dependence.

The flux dependence can be localized by a limiting strategy (Lamine and Edwards, 2008), but in

order to preserve the multi-D nature of the schemes, especially in rough velocity fields, it is more

convenient to introduce a local coupling through interaction regions, which have been extensively

used in multi-point flux approximation methods (Aavatsmark, 2002; Edwards and Rogers, 1998).

4.3 Interaction Region Definitions

Here we discuss how interaction regions are defined for Cartesian grids, though it should be noted

that much of the work that follows applies to general grid topologies. In particular, the scheme

definitions and the proof of monotonicity presented in the next section are grid topology independent.

As illustrated in Figure 4.4, interaction regions form a dual grid whose grid lines connect cell centers

and face centers, the dotted lines in the figure.

Each Cartesian interior grid cell (i, j) is part of four interaction regions. We label the local

interaction regions with superscript m = 1, 2, 3, 4, counterclockwise from the bottom left corner of

cell (i, j), as illustrated in Figure 4.4(b). We denote the four grid cell segments (subcells) that make

up each interaction region, with subscript p = 1, 2, 3, 4, counterclockwise starting in the lower left
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(a) Single interaction
region

(b) All interaction regions for cell (i, j)

Figure 4.4: Pictorial view of an interaction region. The vectors represent the direction defined to
be positive.

subcell (Figure 4.4(a)). Similarly, the half-faces in each interaction region are numbered counter-

clockwise from p = 1, 2, 3, 4 starting with the bottom most half-face. Then, C
(m)
p denotes the average

mass in subcell p of interaction region m. The cell averaged quantities are

Ci,j = C
(1)
3 = C

(2)
4 = C

(3)
1 = C

(4)
2 ,

and face-based values are

σi−1/2,j = −σ
(1)
3 + σ

(4)
1 , σi+1/2,j = −σ

(2)
3 + σ

(3)
1 ,

σi,j−1/2 = σ
(1)
2 − σ

(2)
4 , σi,j+1/2 = σ

(4)
2 − σ

(3)
4 ,

where (i + 1/2, j) denotes the face between cell (i, j) and (i + 1, j), and similarly for the other faces.

For our work σ is determined by a two-point flux approximation and therefore

σi−1/2,j

2
= σ

(4)
1 = −σ

(1)
3 .

For more general MPFA methods this would not necessarily be the case.

In general, depending on the local grid topology, there may be more or fewer subcells and half-

faces per interaction region, but the setup is the same. One of the properties of interaction regions
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is that no matter the grid topology, the number of subcells and half-faces in an interaction region

is always the same. We denote this number for interaction region (m) as n
(m)
ir . Also, each grid cell

always belongs to as many interaction regions as it has faces. If the positive direction of the vectors

in an interaction region are defined in the counterclockwise direction, all the results that follow also

hold for general grid topologies.

4.4 Local Monotonicity Constraints for Interaction Regions

For a Cartesian grid, the mass in cell (i, j) is updated according to

Cn+1
i,j = Cn

i,j −
∆t

h

(
F (1)

3 −F (1)
2 + F (2)

4 −F (2)
3 + F (3)

1 −F (3)
4 + F (4)

2 −F (4)
1

)
.

By defining the subcell accumulation term ϕ
(m)
k = F (m)

k −F (m)
k−1, the update can be written as

Cn+1
i,j = Cn

i,j −
4∑

k=1

∆t

h2
ϕ

(k−2)
k , (4.13)

where plus and minus for interaction region superscripts and subscripts are defined cyclically on the

set {1, 2, 3, 4}. For monotonicity, Equation 4.11, it is sufficient to require that

0 ≤ ∂ϕ
(k−2)
k

∂C
(k−2)
l 6=k

, (4.14)

1 ≤ ∆t

h2

[
4∑

k=1

∂ϕ
(k−2)
k

∂C
(k−2)
k

]
. (4.15)

The constraint given by Equation 4.14 only includes subcells of interaction region (k − 2), that

is, it is only a local coupling. This demonstrates the attraction of interaction regions because a

potential global coupling has been reduced to a local interaction region coupling. Equation 4.15, on

the other hand, involves all interaction regions that cell (i, j) belongs to and imposes a global time

step constraint on the problem, as would be present in any explicit transport method. Hence we

can calculate all the fluxes F (m)
p for a cell such that they satisfy the local constraint of Equation

4.14 and then choose a time step ∆t that satisfies Equation 4.15 for all the cells (i, j) of the grid.

For general grid topologies the same equations hold with appropriate adjustments of the number of

terms in the update and constraints.
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(a) (b)

Figure 4.5: Pictorial view of the traceback ω∗2 and ζ̄2 assuming that σ1 > 0 and σ2 > 0

4.5 Multi-D Mobility Weighting

Since we have shown that we only need a local coupling, we drop the superscript notation (m)

denoting interaction region number. Stencil matrix R now only applies to a single interaction

region. The vector ζ also refers to the subcell values of the interaction region. As noted in the

previous section, we are searching for methods of the form

F = ζ̄ • σ, (4.16)

where

ζ̄ = Rζ.

Again, we assume that ζ(C) is non-decreasing in C. By making this assumption we can define

the upwind direction from the sign of σ for a face without considering the derivative of ζ(C). The

face-based mobilities are defined as

ζ̄k =





(1− ωk)ζk + ωk ζ̄k−1, if σk ≥ 0

(1− ωk)ζk+1 + ωk ζ̄k+1, otherwise
, (4.17)

where ωk is a yet to be defined interpolation parameter. In other words, we take a face mobility to be

a combination of the upwind subcell mobility and the upwind face mobility. Physically this means

that some of the fluid flowing through an interaction region half-face came from the upwind subcell

and some came from the other the half-face of the subcell, see Figure 4.5. The multi-D character

of the scheme is dictated by the interpolation parameter ωk. If we let ωk = 0, we get single point

upstream weighting. We require the interpolation parameter to satisfy 0 ≤ ωk ≤ 1, and it will also
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be constrained by the amount of fluid flowing in and out of the subcell. The traceback defined by

σk and the upwind phase flux, Figure 4.5, as

ω∗k =





max(0, σk−1/σk), if σk > 0

max(0, σk+1/σk), if σk < 0

0, if σj = 0

. (4.18)

We defined the interpolation parameter by the limiting function ωk = ω(ω∗k), where the limiting

function has the property 0 ≤ ω(ω∗k) ≤ min(1, ω∗k). As we will see, this property is necessary for the

scheme to be monotone.

Finally, we arrive at the following linear system of equations derived from Equation 4.17

Aζ̄ = Bζ, (4.19)

and hence

R = A−1B.

The matrix A represents the local coupling over the interaction region and is an M-matrix with

diagonal elements ai,i = 1 and off-diagonals

ai,i+1 =




−ωi, if σi < 0

0, if σj ≥ 0
,

ai,i−1 =





0, if σi < 0

−ωi, if σi ≥ 0
,

ai,j = 0, j 6= i, i + 1, i− 1.

In the above, i± 1 is defined cyclically on the set {1, 2, . . . , nir}. For A to be nonsingular we must

have ωj < 1 for at least one j ∈ {1, 2, . . . , nir}. In practice this is not a large restriction because

if ωj = 1 for all j ∈ {1, 2, . . . , nir} then σ1 = σ2 = · · · = σnir which is unlikely. The matrix B is
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nonnegative,

bi,i+1 =





1− ωi, if σi < 0

0, if σj ≥ 0
,

bi,i =





0, if σi < 0

1− ωi, if σi ≥ 0
,

bi,j = 0, j 6= i± 1,

where i+1 is again defined in a cyclic manner. This means that R = A−1B is a nonnegative matrix,

and ζ̄k =
∑nir

j=1 rk,jζj where rk,j ≥ 0 are the elements of R.

Theorem 1. Given the following assumptions:

• non-negative discrete masses, Cn ≥ 0

• flux expressions for the interaction regions satisfying Equation 4.16, F = ζ̄ • σ

• ζ̄ defined by Equations 4.17

• ζ ′(C) ≥ 0 (a non-decreasing function of C)

• an interpolation parameter ω = ω(ω∗) with ω∗ defined by 4.18 and 0 ≤ ω(ω∗) ≤ min(1, ω∗)

• ωl < 1 for at least one l ∈ {1, 2, . . . , nir}
then the defined scheme satisfies monotonicity constraint of Equation 4.14,

0 ≥ ∂ϕk

∂Cj 6=k
,

where ϕk = Fk −Fk−1.

Proof. We will prove the theorem for subcell k and need to consider three cases: (1) σk ≤ 0 and

σk−1 ≥ 0, (2)σk ≥ 0 and σk−1 ≤ 0 and (3) σk ≥ 0 and σk−1 ≥ 0. (The case σk ≤ 0 and σk−1 ≤ 0

is handled by symmetry.) To satisfy Equation 4.14 we need to show that for each of these cases
∂ϕk

∂Cj
≤ 0.

1. σk ≤ 0 and σk−1 ≥ 0:

The accumulation term is

ϕk = Fk −Fk−1

= σk ζ̄k − σk−1ζ̄k−1

=
nir∑

j=1

(σkrk,j − σk−1rk,j) ζj .
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The derivative of this with respect to Cj 6=k is

∂ϕk

∂Cj
= (σkrk,j − σk−1rk−1,j) ζ ′(Cj),

where (σkrk,j − σk−1rk,j) ≤ 0 by the properties of the stencil matrix and sign assumptions on

σk and σk−1, and ζ ′(Cj) > 0 by assumption. Hence overall ∂ϕk

∂Cj
≤ 0.

2. σk ≥ 0 and σk−1 ≤ 0:

The accumulation term is

ϕk = Fk −Fk−1

= σk ζ̄k − σk−1ζ̄k−1

= σkζk − σk−1ζk,

so ∂ϕk

∂Cj
= 0 for Cj 6=k.

3. σk ≥ 0 and σk−1 ≥ 0:

The upstream subcell of face k is subcell k and the upstream half-face is k − 1 (similar to

Figure 4.5) so the accumulation term for subcell k is

ϕk = Fk −Fk−1

= σk ζ̄k − σk−1ζ̄k−1

= σk

(
(1− ωk)ζk + ωk ζ̄k−1

)− σk−1ζ̄k−1

= σk(1− ωk)ζk − (σk−1 − σkωk) ζ̄k−1

= σk(1− ωk)ζk − (σk−1 − σkωk)
nir∑

j=1

rk−1,jζj .

We have

σk−1 − σkωk ≥ σk−1 − σk
σk−1

σk
= 0,

by the properties of the limiter function ωk = ω(ω∗k) and the definition of ω∗k in Equation 4.18.

Taking the derivative of ϕk with respect to Cj 6=k gives

∂ϕk

∂Cj
= − (σk−1 − σkωk) rk−1,jζ

′(Cj)

where all the terms are positive, so overall ∂ϕk

∂Cj
≤ 0.

The above theorem is for subcell values, but due to Equations 4.14, it applies to the underlying
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global computation grid. We have shown that a grid cell (i, j) is monotone with respect to all the

other cells (k, l) 6= (i, j). For the update, or discretization, to be monotone we also need it to be

monotone with respect to its own cell (i, j). This comes in the form of the time step constraint,

Equation 4.15,

1 ≥ ∆t

h2

[
4∑

k=1

∂ϕ
(k−2)
k

∂C
(k−2)
k

]
, (4.20)

where ϕ
(k−2)
k = F (k−1)

k −F (k−1)
k−1 . We can write

∂ϕ
(k−2)
k

∂C
(k−2)
k

=
∂

∂C
(k−2)
k

(
nir∑

i=1

(
c
(k−2)
k,i σ

(k−2)
k − c

(k−2)
k−1,i σ

(k−2)
k−1

)
ζ

(
C(k−2)

))

= (c(k−2)
k,k σ

(k−2)
k − c

(k−2)
k,k−1σ

(k−2)
k−1 )ζ ′

(
C

(k−2)
k

)
.

4.5.1 Derivative of Mobility Weighting

In chapter 6, subsection 6.1.4, we will need the derivative of ζ̄ with respect to the pressure variables.

We can efficiently construct these values over the interaction region using the matrices and factors

that have already been computed. Taking the derivative of ζ̄k, Equation 4.17, with respect to pj ,

the pressure of subcell j, we get

∂ζ̄k

∂pj
= −∂ωk

∂pj
ζ(Sk) +

∂ωk

∂pj
ζ̄k−1 + ωk

∂ζ̄k−1

∂pj
, (4.21)

∂ω(ω∗k)
∂pj

= ω′(ω∗k)
∂ω∗k
∂pj

,

∂ω∗k
∂pj

=





(σktk−1,j − tk,jσk−1) /σ2
k if ω∗k > 0

0 otherwise
,

where tij is element (i, j) of the interaction region transmissibility matrix T (σ = tan T (p− gρH),

see chapter 6), and we have assumed that σk > 0; the other case is similar. Equation 4.21 can be

written as

A
∂ζ̄

∂p
= Dζζ + Dζ̄ ζ̄,

where A is the same matrix as was computed in Equation 4.19. Thus the same linear system needs

to be solved with a new right hand side.

4.6 Definition of Select Interaction Region Based Schemes

The final matter that we must consider is how to construct the limiter ω(x). In section 4.1 we

analyzed three constant velocity scalar advection methods: SPU, Narrow Scheme (N-scheme) (Roe
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and Sidilkover, 1992), and Koren’s (1991) Scheme. These methods inspire three limiters

ωSPU(x) = 0, ω′SPU(x) = 0 (4.22)

ωTMU(x) = min(1, x), ω′TMU(x) =





1, 0 ≤ x ≤ 1

0, otherwise
(4.23)

ωSMU(x) =
x

1 + x
, ω′SMU(x) =

1
(1 + x)2

(4.24)

where TMU, or tight multi-D upstream limiting, corresponds to the N-scheme when applied to

the constant velocity scalar advection problem and SMU, or smooth multi-D upstream limiting,

corresponds to Koren’s scheme.

Here we note that SPU and TMU are limiting members of this family of schemes. SPU being the

lower limit and TMU the upper limit. SMU, on the other hand, is an interior method which results

in smoother interpolation parameters. Other methods are possible within this family, namely any

method for scalar advection that is of the single parameter family described in section 4.1, Equation

4.5 is expressible, where κ is

κ = u
(
1− ω

(u

v

))
+ v

(
1− ω

( v

u

))
.

4.7 Handling General Mobility Functions

Here we will generalize the design of multi-D upwind schemes to more general flux functions. This

will allow us to consider partially miscible flows in addition to immiscible flows covered by the

formulation previously presented. Still working within the interaction region framework we define

fi(C) = σiζ(C) and the upwind state C∗i to be such that

F∗i = fi(C∗i ) =





maxCi≤c≤Ci+1 fi(c), if Ci ≤ Ci+1

maxCi+1≤c≤Ci fi(c), if Ci > Ci+1

,

where this upwind state has the property that

C∗i =





Ci, if f ′i(C
∗
i ) ≥ 0

Ci+1, if f ′i(C
∗
i ) ≤ 0

Cs, if f ′i(C
∗
i ) = 0

.

The point Cs is such that f ′i(Cs) = 0 (there may be more than one such value). The mobility

functions considered in previous sections were such that ζ ′(C) ≥ 0. This meant that the flux

function f(C) = σζ(C) was a nondecreasing function of C if σ ≥ 0 and non-increasing if σ < 0, so
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we were able to determine the upwind state by only considering the sign of σ.

The multi-D mobility weighting is then defined as

ζ̄i =





(1− ωi)ζi − ωiζ̄i−1, if f ′i(C
∗
i ) > 0, f ′i+1(C

∗
i−1) > 0

(1− ωi)ζi+1 − ωiζ̄i+1, if f ′i(C
∗
i ) < 0, f ′i+1(C

∗
i+1) < 0

ζ(C∗i ), otherwise

,

where ω∗i is now defined as

ω∗i =





max
(
0, σi−1

σi

)
, if f ′i(C

∗
i ) > 0, f ′i+1(C

∗
i−1) > 0

max
(
0, σi+1

σi

)
, if f ′i(C

∗
i ) < 0, f ′i+1(C

∗
i+1) < 0

0, otherwise

.

The proof to show that this method is monotone is a straightforward extension of the proof of

Theorem 1 and is shown in Appendix B.

The method can be applied to any nonlinear partial differential equation of the form

Ct +∇ ·
[
f(C)

g(C)

]
= 0,

if f ′(C)/g′(C) = β, where β is independent of C. For the nonlinear problems in this thesis,

(f(C), g(C))T = ζ(C)(σx, σy)T so then β = σx/σy.

4.8 Constant Transverse Diffusion Scheme

As we will see in chapter 5 the N-scheme, or TMU, drastically reduces GOE as compared with

SPU for miscible gas injection. This can be attributed to the fact that the N-scheme has minimal

transverse diffusion over all linear positive schemes for scalar advection. An optimal first order

scheme might be defined as having zero transverse diffusion for all flow angles however to achieve

this it would be necessary to give up the desired positivity of the scheme. Nonetheless, we can

construct a scheme with a minimal amount of constant transverse diffusion. Starting with the N-

scheme as a base method, we add a first order diffusive correction so that the resultant scheme

has constant transverse diffusion at the same level as the maximum transverse diffusion value of

the N-scheme. This constant amount of transverse diffusion is the minimal amount necessary to

construct a positive scheme. This method is only developed and used for scalar advection.

The N-scheme corresponds to κ = |u − v| = γ| cos θ − sin θ| in Equation 4.9), which gives a
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transverse diffusion of

dns
nn = γ

h

2
| cos θ − sin θ| sin θ cos θ, 0 ≤ θ ≤ π/2. (4.25)

We add a correction dcor
nn so that

dns
nn + dcor

nn = γ
h

2
max

0≤θ≤π/2
(| cos θ − sin θ| sin θ cos θ) ≡ hγψ, (4.26)

which occurs at θ∗ equal to

θ∗ = arctan

(
3−√5

2

)
≈ 0.365. (4.27)

Thus,

dcor
nn = γ

h

2
(ψ − | cos θ − sin θ| sin θ cos θ) (4.28)

with ψ ≈ 0.1925.

We will begin by defining the correction in the finite difference framework for

ct +∇ · (uc) = 0,

where u = (cos θ, sin θ)T . Consider the case that u ≥ v ≥ 0 or 0 ≤ θ ≤ π/4 (as in section 4.1). The

other seven ranges are handled similarly. For this range, the N-scheme depends on the concentrations

Ci,j , Ci−1,j , and Ci,j−1. To control the magnitude of the transverse diffusion, we must add at least

one point to the stencil. When θ∗ ≤ θ ≤ π/4 this can be done within the single parameter family of

schemes, Equation 4.6, by setting κ = ψ/uv, which has the effect of modifying the zero weight on

the point Ci,j−1 of the N-scheme stencil (see Equation 4.5). However, as v → 0 (θ → 0) this κ does

not satisfy the positivity constraint |u− v| ≤ κ ≤ u + v (Equation 4.6) since κ →∞. For positivity

the stencil must be modified to include at least one more grid point for the range of parameters

that violate positivity. For this range, 0 ≤ θ ≤ θ∗, we chose to modify the stencil to include the

point Ci−1,j+1 and remove point Ci,j−1, thus keeping 4 points. This results in a consistent, positive

scheme with constant transverse diffusion given by

Cn+1
i,j = Cn

i,j +
∆t

h
(−uCn

i,j + (u− v)Cn
i−1,j + vCn

i−1,j−1)

+
∆t

2h

(
γ3ψ − uv|u− v|

u2

)
(Cn

i−1,j+1 − 2Cn
i−1,j + Cn

i−1,j−1),

where γ =
√

u2 + v2. The modifications to the N-scheme stencil are shown in Figure 4.6 for the

entire parameter range 0 ≤ θ ≤ π/2. In this figure, the black square represents the grid point that

is updated, the black points are in the original N-scheme stencil, and the black empty circle is the

extra point added to the stencil to control the transverse diffusion. We call this scheme the Flat
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(a) 0 ≤ θ ≤ θ∗ (b) θ∗ ≤ θ ≤ π/4 (c) π/4 ≤ θ ≤ π/2 −
θ∗

(d) π/2 − θ∗ ≤ θ ≤
π/2

Figure 4.6: Stencils to be used for 0 ≤ θ ≤ π/2 for a constant positive velocity field. In each
subfigure, the black square is the point to be updated, the black points are the original N-scheme
stencil, and black empty circle is the extra point added to control transverse diffusion.
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Figure 4.7: A Gaussian blob advected at different angles to the grid for the Flat scheme. Results
for all angles are shown in one plot. ∆t = 0.75

√
2/2 and tmax = 0.8. Contours are shown at

c = 0.0, 0.1, . . . , 1.0.

scheme because the plot of the transverse diffusion coefficient with respect to θ is a flat line.

The constant velocity test for the Flat scheme is shown in Figure 4.7 using the time step,

∆t = 0.75
√

2h/2. As can be seen, the scheme has closer to constant transverse spreading of the blob

than SPU, the N-scheme, and Koren’s scheme as shown in Figure 4.3. The longitudinal spreading

and the rotation effects are comparable with the N-scheme, though these terms have been changed

slightly by the modification of the stencil.

In the extension of this scheme to an interaction region framework, care be must taken to maintain

positivity of the scheme and to not introduce diffusion across faces of cells with low permeability. The

resultant scheme is, however, a straightforward extension within the previously defined framework.

We will continue to use σ to represent the velocity field and change ζ(C) to C since this scheme is

developed for scalar advection. The Flat Scheme can be extended to the more general hyperbolic

equation given in Equation 4.10, but as the N-scheme (TMU) is not the best performing scheme for
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Range of θ̃ Pair of (ap, bp) values

0 ≤ θ̃ ≤ θ∗
(

γ̃3ψ−σ̃1σ̃2|σ̃2−σ̃1|
σ̃1(σ̃1−σ̃2)

, 0
)

θ∗ ≤ θ̃ ≤ π
2 − θ∗

(
0, γ̃3ψ−σ̃1σ̃2|σ̃1−σ̃2|

2σ̃1σ̃2

)

π
2 − θ∗ ≤ θ̃ ≤ π

2

(
0, 0

)

Table 4.2: (ap, bp) pairs for half-face p. If σp−1 < 0 or σp+1 ≥ 0 then (ap, bp) = (0, 0). Parameters
for the coefficients calculation are defined as θ̃ = arctan(σuw/σp), σ̃1 = 2/(1/σp−1 − 1/σp+1),
σ̃2 = σ̃1 tan θ̃, and γ̃ =

√
σ̃1

2 + σ̃2
2.

the nonlinear problems we have not implemented this. Consider half-face p in an interaction region.

The numerical flux expression for this half-face is

Fadv
p = σpC̄p = σp

4∑
q=1

Ap,qCq, (4.29)

with Ap,q defined by the N-scheme. If σp−1 ≥ 0 and σp+1 ≤ 0, we add to this half-face a first order

diffusive flux of the form

Fdiff
p =





ap(C̄p−1 − C̄p+1) + bp(Cp − C̄p−1) σp ≥ 0, σp−1 ≥ 0 and σp+1 < 0

ap(C̄p−1 − C̄p+1)− bp(Cp+1 − C̄p+1) σp < 0, σp−1 ≥ 0 and σp+1 < 0

0 σp−1 < 0 or σp+1 ≥ 0

. (4.30)

The values of ap ≥ 0 and bp ≥ 0 will depend on σp−1, σp, and σp+1. Including the half-face

concentrations C̄p+1 and C̄p−1 in the flux expression rather than Cp−1 and Cp+2 leads to simpler

expressions for (ap, bp) that maintain positivity.

In Table 4.2 we give the values for (ap, bp) pairs for half-face p. These values have been chosen

so that the scheme is consistent with the finite difference formulation when the velocity field is

constant and so that the flux expressions depend on as few cells as possible. Using a harmonic

average in the definition of σ̃1 introduces less diffusion in cases where the velocity field is rough and

avoids smearing across low permeability cells. Positivity of the scheme for these pairs of (ap, bp)

is shown in Appendix A. Allowing the scheme to have both parameters non-zero at the same time

would introduce one more degree of freedom in the scheme and thus the ability to control the other

diffusion terms (longitudinal and the mixed-term) but, this would complicate the positivity proofs.



Chapter 5

Miscible Results

We present two different types of test problems to highlight the benefit of multi-D flux calculations.

The first is the quarter five-spot problem, which is used throughout the literature to test for grid

orientation because it has two natural symmetries and grid-preferred flow directions. The second

is a radial displacement in homogeneous and heterogeneous domains. In a homogeneous domain,

this displacement does not have a preferred flow direction and hence directly reveals biasing of the

numerical solutions. In heterogeneous domains, we consider ensemble averages to help understand

the effects of permeability variations on grid dependency, and the relative importance of these effects

compared to grid dependent numerical errors.

As in chapter 3, we use the miscible model in fractional flow formulation, that is,

0 = −∇ · K

µe,g(Sg)
∇p ≡ ∇ · u, (5.1)

0 = φ
∂cg

∂t
+∇ · (cgu) , (5.2)

as was derived in section 2.5. In the next chapter we will consider the nonlinear Darcy form. Since

there are no gravitational effects the equations do not change if we assume that ρg = ρo = 1 and

thus let cg = Sg. Since So = 1−Sg = co we let c ≡ cg since we can always recover co = 1−c = 1−cg

when needed.

We solve the coupled system, Equations 5.1 and 5.2, with an IMPEC strategy (implicit pressure,

explicit concentration). At each time step, a two-point flux approximation is used to solve for the

pressures, Equation 5.1. In the x-direction, we set

Ui+1/2,j =
hKi+1/2,j

µ(C∗i+1/2,j)
(Pi+1,j − Pi,j)

h
, (5.3)

where Ki+1/2,j = 2/(1/Ki+1,j + 1/Ki,j) is the harmonic average of the permeability on either side

61
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of the face. The fluid mobility is upwinded in a manner consistent with the transport discretization

using the previous flux field and current concentrations, which gives C∗i+1/2,j = 1
2

(
C̄

(2),n
3 + C̄

(3),n
1

)
.

We assume that the fluxes do not change too rapidly between time steps. If this were indeed the

case, the IMPEC procedure could instead be iterated until C∗i+1/2,j was consistent with fluxes at

the new time level. The fluxes in the y-direction Ui,j+1/2 are defined in an analogous manner. With

these definitions, the linear system of equations

Ui+1/2,j − Ui−1/2,j + Ui,j+1/2 − Ui,j−1/2 =
qi,j

h2
,

is solved first for pressure, and then the fluxes are calculated locally from Equation 5.3. Here, qi,j < 0

for a production well, and qi,j > 0 for an injection well. After solving for pressure and the flux field,

we advance concentrations to the next time level using one of the transport methods described in

sections 4.6 and 4.8.

The time step size is constrained to ensure that we do not extract more fluid from a production

well block than is available, that is, ∆t ≤ 1/(h2qmax) where qmax = max{i,j}(−qi,j), i.e. the largest

production well rate. The time step size is also constrained by the CFL condition for the hyperbolic

transport solve.

As previously noted, our monotone methods are positive when applied to scalar advection prob-

lems. This means that as long as the well source terms are consistent with the divergence of the

pressure field in the well blocks, the mass concentrations will satisfy Cn
i,j ∈ [0, ρg] throughout the

entire simulation. As we will see in chapter 6 we will need a complex framework for simulation of

nonlinear equations.

5.1 Homogeneous Quarter Five-Spot

Here we consider the quarter five-spot problem as discussed in section 3.1. In Figure 5.1 the results

for a 50× 50 diagonal grid are compared with those for a 71× 71 parallel grid with a mobility ratio

of M = 30. The recovery curves are shown for 1 PVI (pore volume injected) for SPU and the Flat

scheme. The displacement fronts are compared at 0.4 PVI for all four schemes. The displacement

fronts show that both SPU and Koren’s scheme have strongly different solutions on the two grids.

On the diagonal grid, the fingers in the SPU solution correspond to the grid directions (0 and π/2),

which are also the zero points of the transverse diffusion. The zero points for Koren’s scheme are

also at 0 and π/2, and as expected we see fingers in these directions. We also notice a finger at π/4

which is expected based on the boundary and well conditions. The level of transverse diffusion at

π/4 is about half that of SPU, as shown in Figure 4.2(b). The N-scheme and the Flat scheme have

more similar solutions on the two grids, with both exhibiting a three-finger structure. These three

fingers correspond to the three zero points of the N-scheme at 0, π/4, and π/2. The fingers in the

displacement fronts for the Flat scheme are slightly smaller than for the N-scheme, though finger
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(a) Recovery curves for SPU and the Flat scheme on the diagonal (solid) and parallel (dashed)
grids.

(b) SPU (c) Koren’s Scheme (d) N-Scheme (e) Flat Scheme

(f) SPU (g) Koren’s Scheme (h) N-Scheme (i) Flat Scheme

Figure 5.1: A miscible adverse mobility ratio, M = 30, quarter five-spot displacement simulated on
a 50× 50 diagonal grid and 71× 71 parallel grid. SPU, Koren’s scheme, the N-scheme, and the Flat
scheme are compared for displacement fronts shown at 0.4 PVI. Solutions (b)-(e) were computed on
the diagonal grid and the contours in (f)-(i) used the parallel grid.
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growth still occurs along the same directions. This is likely due to the fact that the Flat scheme is a

modification of the N-scheme, and the diffusion added is purposely kept low so as not to diffuse into

no-flow grid blocks. The breakthrough times are much closer for the N-scheme and the Flat scheme

than for SPU and Koren’s scheme.

Our results clearly show that these problems are highly sensitive to numerical errors. There-

fore, numerical solutions may change significantly as a result of grid refinement or changes in grid

orientation. The sensitivity is lower for large physical diffusion, but in realistic reservoir models

of these adverse mobility flows, the physical diffusion will be overwhelmed by numerical diffusion.

Consequently, it is not possible to derive “correct” solutions. However, in order to reliably calibrate

the model at the simulation scale, it is crucial that the solution at that scale does not exhibit strong

sensitivity to grid orientation. The truly multi-D schemes do much better than SPU, and overall

the Flat scheme and N-scheme show the least grid dependency.

In Figure 5.2 displacement fronts for SPU and the Flat scheme are compared for increasing

mobility ratios M = 1, 5, 10, 30 using the same grids as above. For M = 1 the problem is stable,

hence the solutions are very close on the two grids. But as the mobility ratio increases and unstable

physical modes become present in the problem, the SPU solutions on the two grids diverge whereas

the Flat scheme solutions remain similar.

5.2 Radial Flow

As a second test we consider a radial displacement on a 99× 99 grid with an injector in the center

grid block (0, 0), q0,0 = 1, and Dirichlet pressure boundary conditions on (i,±49) and (±49, j).

At these boundaries the pressure is forced to the solution for homogeneous radial flow, given by

p(x, y) = − 1
2π ln

√
x2 + y2. The integral of the pressure over the grid block (i, j) is approximated

with the trapezoidal rule. For this test problem the homogeneous results for SPU, the N-scheme,

and the Flat scheme are shown in Figure 5.3. They clearly show strong preferential transport along

the grid directions for SPU. The N-scheme and Flat scheme results also show preferential transport

along the grid directions with additional preferred transport at π/4, 3π/4, 5π/4, and 7π/4. However,

the deviation from radial flow is much smaller than for SPU, with the Flat scheme giving the best

results.

To understand how the numerical errors affect the solutions in the presence of heterogeneity, we

simulate this same displacement on random permeability fields and compute an ensemble average

of the results. We use sequential Gaussian simulation (Deutsch and Journel, 1998) to generate log-

normally distributed permeability fields of dimensions 99× 99 on a unit square. The dimensionless

correlation lengths are set at λ = 3/99 and λ = 10/99, corresponding to correlation lengths of 3 and

10 grid blocks, respectively. The standard deviation σ of ln K is set to either σ = 0.25 or σ = 1.00,

and the mean of ln K is fixed at 3.0.
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(a) SPU, M = 1, diag-
onal grid

(b) SPU, M = 5, diag-
onal grid

(c) SPU, M = 10, diag-
onal grid

(d) SPU, M = 20, di-
agonal grid

(e) SPU, M = 1, paral-
lel grid

(f) SPU, M = 5, paral-
lel grid

(g) SPU, M = 10, par-
allel grid

(h) SPU, M = 20, par-
allel grid

(i) Flat Scheme, M =
1, diagonal grid

(j) Flat Scheme, M =
5, diagonal grid

(k) Flat Scheme, M =
10, diagonal grid

(l) Flat Scheme, M =
20, diagonal grid

(m) Flat Scheme, M =
1, parallel grid

(n) Flat Scheme, M =
5, parallel grid

(o) Flat Scheme, M =
10, parallel grid

(p) Flat Scheme, M =
20, parallel grid

Figure 5.2: Comparisons between SPU and the Flat scheme for a quarter five-spot displacement
with increasing mobility ratios simulated on a 50× 50 diagonal grid and 71× 71 parallel grid.
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(a) SPU
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(b) N-scheme
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(c) Flat scheme

Figure 5.3: Radial test problem in a homogeneous media for M = 30 using a 99× 99 computational
grid. Results are shown for SPU, the N-scheme, and the Flat scheme.

Figure 5.4 shows results for the three schemes on one realization of the permeability field for each

pair of λ and σ values. The plots show strong differences between the SPU solutions, the N-scheme,

and Flat scheme solutions. The differences are particularly stark for σ = 0.25. Figure 5.5 presents

the ensemble averaged results for the full set of realizations. The number of realizations is chosen so

that the average displacement solution appears symmetric. Therefore, fewer simulations are required

for the fields with weaker permeability variations. Clearly, the schemes introduce biases: on average,

numerical errors trigger fingers in preferential directions. SPU suffers most from the grid orientation

effect. Even for the large permeability contrasts, its solutions are clearly grid dependent. This bias

does not show clearly for a single realization, which demonstrates the utility of ensemble averaging.

The N-scheme and the Flat scheme both show strongly reduced biasing. The solutions have more

preferential flow paths. This was expected as for these schemes, the numerical transverse diffusion

averaged over all angles is less than half that of SPU. This is sufficiently low enough that fingers are

triggered more easily by the permeability variations rather than grid dependent numerical errors.
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(a) SPU: 3 grid block
correlation, σ = 0.25,
kmax/kmin = 6.5
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(b) SPU: 3 grid block
correlation, σ = 1.00,
kmax/kmin = 1899
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(c) SPU: 10 grid block
correlation, σ = 0.25,
kmax/kmin = 5.9
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(d) SPU: 10 grid block
correlation, σ = 1.00,
kmax/kmin = 1232
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(e) N-Scheme: 3 grid
block correlation, σ =
0.25
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(f) N-Scheme: 3 grid
block correlation, σ =
1.00
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(g) N-Scheme: 10 grid
block correlation, σ =
0.25
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(h) N-Scheme: 10 grid
block correlation, σ =
1.00
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(i) Flat Scheme: 3 grid
block correlation, σ =
0.25
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(j) Flat Scheme: 3 grid
block correlation, σ =
1.00
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(k) Flat Scheme: 10
grid block correlation,
σ = 0.25
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(l) Flat Scheme: 10
grid block correlation,
σ = 1.00

Figure 5.4: Radial test problem for a single realization of the permeability field with the parameters
shown.
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(a) SPU: 3 grid block
correlation, σ = 0.25
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(b) SPU: 3 grid block
correlation, σ = 1.00
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(c) SPU: 10 grid block
correlation, σ = 0.25
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(d) SPU: 10 grid block
correlation, σ = 1.00
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(e) N-Scheme: 3 grid
block correlation, σ =
0.25
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(f) N-Scheme: 3 grid
block correlation, σ =
1.00

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(g) N-Scheme: 10 grid
block correlation, σ =
0.25

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(h) N-Scheme: 10 grid
block correlation, σ =
1.00
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(i) Flat Scheme: 3 grid
block correlation, σ =
0.25
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(j) Flat Scheme: 3 grid
block correlation, σ =
1.00
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(k) Flat Scheme: 10
grid block correlation,
σ = 0.25
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(l) Flat Scheme: 10
grid block correlation,
σ = 1.00

Figure 5.5: Ensemble averages of displacement fronts for multiple realizations of a heterogeneous
permeability field for the radial test problem. The standard deviation of lnK, σ, controls the
permeability contrast of the individual permeability realizations: kmax/kmin ∼ 6 for σ = 0.25 and
kmax/kmin ∼ 103 for σ = 1.00. 175 realizations were used for the correlation length of three grid
blocks, and 330 were used for the 10 grid block correlation solutions.



Chapter 6

Nonlinear Framework and

Simulation Results

For the case of scalar advection, the monotone schemes that we used were positive as was shown in

chapter 4. This meant that when these schemes were applied to the miscible model in fractional flow

form, the mass concentrations were provably bounded in Cn
i,j ∈ [0, 1]. For nonlinear problems this is

not the case. As we will see, monotonicity, along with certain physical assumptions on the mobility

function, constrains the lower bound but not the upper bound of the updated mass concentrations.

When discretized in a manner consistent with the transport equation, the pressure equation acts as

a constraint equation bounding the upper value of the mass variables. For general mobility stencils,

such as those arising from multi-D mobility weighting, it is impractical to fully reduce the pressure

residual as this requires nonlinear iterations on the pressure equation. Thus before applying the

multi-D methods to the nonlinear problem, we develop a volume relaxed framework for simulation.

This framework will allow us to handle numerical errors in a consistent and robust manner and will

ensure that the saturations remain physical.

6.1 Discrete Governing Equation Framework

Our first consideration is to present the finite volume framework with which we discretize Equations

2.6 and 2.7. Written in finite volume form, these equations become

0 =
∑

α=o,w


 ∑

j∈neigh{i}

Fn
α,i,j

ρα
− Qn

α,i

ρα


 ,

Cn+1
α,i = Cn

α,i −
∆t

Vi

∑

j∈neigh{i}
Fn

α,i,j +
∆t

Vi
Qn

α,i, α = o, w,

69
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with the integral terms

Fα,i,j = −ρα

tn+1∫

tn

∫∫

∂Ωi,j

λ(Sα)K∇(pα − ραgh) · n̂i,j ds dt, (6.1)

Qn
α,i = ρα

tn+1∫

tn

∫∫∫

Ωi

qα dV dt.

Assume that we have a discretization of Equation 6.1 of the form

Fα,i,j =

tn+1∫

tn

∫

∂Ωi,j

ραuα · n̂i,j ds dt

= −
tn+1∫

tn

∫

∂Ωi,j

ραλα(Sα)(K∇(p− ραgh)) · n̂i,j ds dt

≈ ραλ̄α,i,jσα,i,j ,

where λ̄α,i,j is a face-based mobility value and σα,i,j is the discretization of the phase flux, not to

be confused with the mass flux Fα,i,j of phase α, that is,

σα,i,j ≈ −
tn+1∫

tn

∫

∂Ωi,j

(K∇(p− ραgh)) · n̂i,j ds dt.

In this way we split the fluid properties, which are captured in λ̄α, from the geometric properties,

which are captured in σα. We call this latter term the geometric term because it is independent of the

particular fluids present, depends purely on the rock properties (absolute permeability), and closely

resembles the flux expression used in single-phase flow (Aziz and Settari, 1979). This splitting allows

us to apply elliptic discretization principles to the phase flux terms σα and hyperbolic techniques to

the phase mobility terms λα.

6.1.1 Discretization of the Geometric Properties

The phase flux terms are typically discretized as

σα = T (pn+1 − ραgH),

where p is a vector of all the cell-centered pressures pi, σα is a vector of all σα,i,j values, T is

a sparse transmissibility matrix with a zero row sum, and H is a vector of cell heights hi. The
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determination of the transmissibility matrix has been the subject of much research, especially for

heterogeneous, full tensor permeability and nonorthogonal grids. It is generally assumed that T

is independent of time and phase so that it can be determined prior to the simulation. For a two

point flux approximation there are two non-zeros in each row of T . For example, assume we have

a two dimensional Cartesian grid with grid spacing ∆x and ∆y with thickness ∆z and a pointwise

isotropic permeability tensor Ki,j = Ki,jI. If tl is row l of T corresponding to the face i + 1/2, j,

that is, the face between cells (i, j) and (i + 1, j), then

σα,i,j = tl(pn+1 − ραgH) = −∆x∆y∆z

∆x

2
1

Ki,j
+ 1

Ki+1,j

((pn+1
i+1,j − ραgHi+1,j)− (pn+1

i,j − ραgHi,j)),

where pi,j and Hi,j are the average pressure and height of cell (i, j), respectively, and we use har-

monic averaging to determine the effective permeability of the face based on the cell permeabilities.

Consistent extension of the two-point flux approximation can be constructed when the grid is K-

orthogonal. If we consider a general grid with two neighboring cells i and j separated by face l

then the grid is K-orthogonal when there exists a point on the face, or its extension, say x̄l, such

that Ki(x̄l − xi) and Kj(x̄l − xj) are orthogonal to the face where xi and xj are the cell centers

and Ki and Kj are the permeability tensors for each cell. When the grid is not K-orthogonal,

multi-point flux approximations are desirable which involve more than two neighboring cells in the

determination of the phase flux (Aavatsmark, 2002; Edwards and Rogers, 1998). In the examples

shown in section 6.2 we will use Cartesian grids and assume pointwise isotropic permeability tensors

so that Kj = KjI, where Kj is a scalar, so that the two-point flux approximation is valid. This is

the same pressure discretization as was used in chapters 3 and 5.

6.1.2 Discretization of the Fluid Properties

In section 4.5 we developed monotone discretization methods for the equation

ct +∇ · (σζ(C)) = 0.

Here we need to apply these methods to the system of equations

cα,t +∇ · (ρασαλα(Sα)) = 0, (6.2)

where α = o, w. We do this by applying the methods to each mass phase independently, that is, for

each grid face a mobility value, λ̄α, is calculated for each phase α. This will lead to methods that

are monotone with respect to the phase being updated. So then for each phase

λ̄α = Rαλ (Sα) ,
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where Rα is the stencil matrix for phase α. In the absence of gravitational forces or capillary forces

Rα is the same for both phases, since σα is the same for both phases. In general there will be a

different stencil matrix for each phase.

In order to compute λα(Sα,i), we will need to calculate the saturations from the mass concen-

trations. In the continuous case we took

Sα,i = Cα,i/ρα, (6.3)

but as noted above we have no upper bound for the discrete values of Cα, hence the saturations

would not be bounded below unity. Due to this challenge, we use the discrete saturation definition

Sα,i(Cw,i, Co,i) =
Cα,i/ρα

Cw,i/ρw + Co,i/ρo
=

volume of phase α in cell i
total volume of fluid in cell i

. (6.4)

Assuming that Cw,i ≥ 0 and Co,i ≥ 0, the definition of discrete saturations given in Equation 6.4

guarantees physical saturations, that is, Sw,i + So.i = 1 and Sα,i ≥ 0.

The discrete nonlinear update for phase α can be written as

Cn+1
α,i = Gα,i(Cn

o , Cn
w),

where Cn
α is a vector of average mass values of phase α for the entire grid. The update depends on

both mass variables due to the fact that saturation is a function of both masses. We say that the

discretization in phase α is monotone if

∂Cn+1
α,i

∂Cn
α,j

=
∂Gα,i(Co, Cw)

∂Cα,j
≥ 0, ∀ i, j,

where 0 ≤ Cα ≤ Cn
α (≤ is computed pointwise). This above expression says that the update for

phase α is a monotone function of the grid values. Note that the derivative in the above equation is

only with respect to the phase that is being updated, not both phases. Note that this definition of

monotonicity is slightly different than that used in the work of Crandall and Majda (1980) in that

the upper bound is the current grid value and not a fix constant. We do this because we will not be

explicitly imposing an upper bound on the mass concentrations. It is easily verified that if Cn
α,j ≥ 0

for all j, then monotonicity implies that Cn+1
α,i ≥ 0 for all i if the discretization is consistent (see

appendix C). Hence, using a monotone discretization along with the discrete saturation definition

yields physical saturations and masses.

We must verify that the discretization methods we developed in section 4.5 are still monotone

under this modified definition of monotonicity. In this setting, the mobility function is now a function

of both masses, since saturation is a function of both masses. Hence, when discretizing Equation
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6.2 we have a ζ(C) which is a function of both masses,

ζα(Co, Cw) = ραλα (Sα (Co, Cw)) . (6.5)

If we take the derivative of this function with respect to Cα we have

∂ζα(Co, Cw)
∂Cα

= ραλ′α (Sα (Co, Cw))
∂Sα (Co, Cw)

∂Cα
= ραλ′α (Sα (Co, Cw))

Cβ 6=α

(Cw + Co)
2 . (6.6)

The last term in this equation
Cβ 6=α

(Cw + Co)
2 ≥ 0,

if Co ≥ 0 and Cw ≥ 0, so the sign of the Equation 6.6 is solely determined by the sign of λ′α(Sα).

If we write the mass update for the entire grid as

Cn+1
α = Cn

α −∆tV −1
(
Div

(
(ραλ̄α(Sn

α, pn+1)) • σα(pn+1)
)−Qα(Sn

α, pn+1)
)
, (6.7)

then this suggests the following algorithm for calculating the face mobilities

Determine the discrete saturations Sn
w and Sn

o from Cn
w and Cn

o (Equation 6.4)

Using the discrete saturations, calculate the face mobilities λ̄α using a scheme from section 4.6

Update the mass of phase α using Equation 6.7

This leads to a monotone methods as shown in section 4.5.

6.1.3 Development of the Mass Conservative Framework

As in the continuous case, the discrete pressure equation can be defined by summing the mass update

equations for both phases scaled by the density,

∑
α=o,w

Cn+1
α

ρα
= (6.8)

∑
α=o,w

Cn
α

ρα
−∆tV −1

∑
α=o,w

(
Div

(
λ̄α(Sn

α, pn+1) • σα(pn+1)
)−Qα(Sn,pn+1)

)
.

In section 2.3 we assumed ∑
α=o,w

Cn+1
α,i

ρα
=

∑
α=o,w

Cn
α,i

ρα
= 1,

that is, we assumed that the total volume of fluid in each cell was constant. As noted above, we

relax this in the nonlinear discrete case allowing for a volume residual in the pressure equation of
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the form ∑
α=o,w

(
Cn+1

α

ρα
− Cn

α

ρα

)
.

When we solve Equation 6.8 we set
∑

α=o,w

Cn+1
α,i

ρα
= 1,

in an attempt to achieve mass balance at time n+1. Given Equation 6.8 we can define the following

implicit pressure explicit mass methods (IMPEM) with the discrete nonlinear system of equations

e =
∑

α=o,w

Cn
α

ρα
−∆tV −1

∑
α=o,w

(
Div

(
λ̄α(Sn

α, pn+1) • σα(pn+1)
)−Qα(Sn

α, pn+1)
)
, (6.9)

Cn+1
w = Cn

w −∆tV −1
(
Div

(
ρwλ̄w(Sn

w, pn+1) • σw(pn+1)
)−Qw(Sn

o , pn+1)
)
, (6.10)

Cn+1
o = Cn

o −∆tV −1
(
Div

(
ρoλ̄o(Sn

o , pn+1) • σo(pn+1)
)−Qo(S

n
w, pn+1)

)
, (6.11)

where e is the vector of all ones and the saturations are defined for α = o, w as

Sn
α =

Cn
α/ρα

Cn
w/ρw + Co/ρo

.

Algorithmically the IMPEM method is

Initialize C0
w and C0

o

for n = 1, 2, · · · do

Define saturations Sn
w and Sn

o using Cn
w and Cn

o (Equation 6.4)

Solve the nonlinear Equation 6.9 for pn+1 with fixed Sn
w and Sn

o (see subsection 6.1.4)

Use pn+1 and Cn to update Cn+1
w (Equation 6.10)

Use pn+1 and Cn to update Cn+1
o (Equation 6.11)

end for

In section 2.3 we had five unknowns determined by three differential equations and three con-

straint equations, where the constraint equations were used to resolve the overdetermined nature of

the system. In the discrete system we have six unknowns determined by three difference equations

and three constraint equations. The difference arises because we have relaxed the assumption that

fluid volume and pore volume are the same, therefore adding an additional unknown to the system

(volume of fluid).

If we use the definition of saturation given in Equation 6.3, then the above algorithm becomes an

IMPES (implicit pressure, explicit saturation) method. The overdetermined nature of the system

of equations must still be overcome. Updating both saturation variables would result in a relaxing

of the constraint equation So + Sw = 1, whereas updating one saturation, say water, and defining
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the other as So = 1 − Sw may relax the physical assumption So ≥ 0, since monotonicity does not

guarantee Sw ≤ 1 only that Sw ≥ 0. Also, even if saturation is used, the pressure equation would

still be nonlinear in the mobility functions when multi-D weightings are used. Using the discrete

definition of saturation given by Equation 6.4, we are guaranteed nonnegative masses and physical

saturations. We have the added complication of needing to update both the mass of water and oil

which may not be required in an IMPES method. However, this is not a significant burden since

the stencil matrix used to update the masses is required for the next pressure solve, and we have

the added benefit of a more robust simulation framework.

6.1.4 Solving the IMPEM Pressure Equation

In the proposed IMPEM method, Equation 6.9 is nonlinear in the pressure. The tolerance to which

this equation is solved determines the size of the volume residual. Standard Newton’s method works

quite well for the schemes proposed in section 4.6, since the IMPEM time step is sufficiently small

to result in fast convergence. Rewriting Equation 6.9 as a nonlinear equation results in the root

finding system

F p(p) =

e−
∑

α=o,w

Cn
α

ρα
+ ∆tV −1

∑
α=o,w

(
Div

(
λ̄α(Sn

α,pn+1) • σα(pn+1)
)−Qα(Sn

α,pn+1)
)
,

where we want to find a pn+1 such that F p(pn+1) = 0. Newton’s method for this equation looks

like

k = 0

pk = pn

while |F p(pk)| > TOL do

Solve: JT
pp(p

k)δk = −F p(pk)

pk+1 = pk + δk

k := k + 1

end while

JT
pp(pk) is the Jacobian of F p(pk) which can be expressed as

JT
pp(p

k) =

∆tV −1

(
Div

(
diag(λ̄α(Sn

α, pk))T + diag(σα(pk))
(

∂λ̄α

∂p

)∣∣∣∣
T

Sn
α ,pk

)
+

(
∂Qα

∂p

)∣∣∣∣
T

Sn
α ,pk

)
.
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Here the operator diag(·) creates a diagonal matrix from a given vector. For SPU ∂λ̄α

∂p = 0, but

for more general discretizations, which incorporate more characteristic flow information, it can be

non-zero. Fortunately, for the family of schemes we propose in section 4.5, the derivatives can be

computed with only minimal additional work as was shown in section 4.5.1.

Due to the relaxed volume property of the framework it is not necessary to solve this nonlinear

system to a small tolerance (we used 10−3 in this work). On average the methods required about 1.1

and 1.5 Newton iterations depending on whether gravitational forces were included. Furthermore,

when the mobility stencil was lagged or averaging was used to determine the mobility values for the

pressure equation, the solutions were qualitatively the same except with larger volume residuals at

any given time step.

6.2 Immiscible and Partially Miscible Results

To demonstrate the benefits of multi-D upstream weighting and the robustness of the volume relaxed

framework we present several homogeneous and heterogeneous test problems. The first test is a linear

pressure driven test to demonstrate the preferential flow directions for the methods. The second

test is a symmetric three well problem (one injector, two producers). This problem is run with and

without gravity for both homogeneous and heterogeneous permeability fields. For the heterogeneous

problem we present solution fronts for a single permeability realization as well as an ensemble average

of solution fronts for many permeability realizations.

For the immiscible test we will consider water displacing a heavy oil. Water is assumed to be

less viscous and more dense than the oil, as captured by using the viscosity ratio µo/µw = 100 and

density difference ρo/ρw = 1/2. The relative permeability functions used are

krw = S2
w and kro = S4

o .

These relative permeability functions are nondecreasing functions on Sα ∈ [0, 1] and have the prop-

erty krα(0) = 0.

In section 6.2.3 we present results for the three well problem with a partially miscible model

which results in a more complex mobility function as previously noted in section 2.5. Here we will

use Koval’s (1963) value for the mixing parameter. We conclude with a discussion of using multi-D

upstream weightings for fully implicit simulation, section 6.2.4.

6.2.1 Linear Pressure Driven

The first test problem that we consider is a homogeneous reservoir with no incline. The domain is

(−1, 1) × (−1, 1) which is discretized uniformly by a 100 × 100 grid of control volumes, hence the
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Figure 6.1: Initial water saturation for the pressure driven test, Sw(x, y) =exp
[−200

(
x2 + y2

)]
.

Contours are shown at 0.1, 0.2,. . . ,1.0.

spacing is ∆x = ∆y = 1/100. We start with initial masses of water and oil

M0
w,i,j = ρw exp

[
−200

(
((i− 1/2) ∆x)2 + ((j − 1/2) ∆y)2

)]
,

M0
o,i,j = ρo

(
1− exp

[
−200

(
((i− 1/2) ∆x)2 + ((j − 1/2) ∆y)2

)])
,

shown in Figure 6.1. Dirichlet pressure boundary conditions are used to create a preferential flow

direction across the grid. The boundary cell pressures are set fixed at

pi,j = 10− (i− 1/2) ∆x cos θ − (j − 1/2) ∆y sin θ,

where θ defines the preferential flow direction. Hence θ = 0 would result in flow in the negative x

direction and θ = π/2, flow in negative y direction. We set the CFL restriction for this test at 0.9

times the maximum allowed time step (Equation 4.15).

In Figure 6.2 we show the results for SPU, tight multi-D upstream weighting (TMU), and smooth

multi-D upstream weighting (SMU), see section 4.6, for angles θ = 0, π/8, and π/4. For the three

different schemes we can make several observations. First, for θ = 0 (Figures 6.2(a), 6.2(b), and

6.2(c)) all solutions are similar as the flow is close to grid aligned, and hence all three schemes closely

resemble SPU.

For θ = π/8 the effect of grid dependent differences becomes more apparent. SMU maintains an

almost symmetric solution front with respect to the preferred flow direction though strong diffusive

effects can be seen in the smoothing of the solution tip. For SPU (Figure 6.2(d)) and TMU (Figure

6.2(e)) solutions are not symmetric. SPU favors flow along the grid direction and TMU the diagonal

to the grid lines, with the deviations of SPU being greater than TMU.

Finally, for θ = π/4 all the methods again produce symmetric solutions. TMU shows strong

preference for this flow angle, with SMU and SPU being significantly smeared. SPU shows a large

amount of smearing in the cross-wind direction, whereas SMU is comparable to the solution front

for θ = π/8.

To summarize, this test demonstrates that SPU has a preferential flow direction along the grid
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(a) SPU with θ = 0 (b) TMU with θ = 0 (c) SMU with θ = 0

(d) SPU with θ = π/8 (e) TMU with θ = π/8 (f) SMU with θ = π/8

(g) SPU with θ = π/4 (h) TMU with θ = π/4 (i) SMU with θ = π/4

Figure 6.2: Immiscible linear pressure driven results for θ = 0, π/8, and π/4 using SPU, TMU,
and SMU. Results are computed on a 100 × 100 grid with the initial condition shown in Figure
6.1. Contours are shown at 0.025, 0.05, 0.075, . . . 1.000. The portion of the domain shown is
x ∈ (−1/3, 2/3) and y ∈ (−1/3, 2/3).
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(a) θ = 0 (b) θ = π/6

Figure 6.3: Domain of the three well test problem for θ = 0 and θ = π/6. White cells are the
interior region, the gray blocks are the boundary cells, and the black cells are the wells. The top
well is the injection well, the bottom left production well one, and the bottom right production well
two.

lines and TMU diagonal to the grid lines. SMU has a slight preference for flow along the grid

directions, but maintains a largely symmetric front for non-grid aligned flow angles.

6.2.2 Three Well Test Problem

The next test we consider has one injector and two producers. The domain is (−0.5, 0.5)×(−0.5, 0.5)

and is initially saturated with oil. This is discretized with a uniform 51×51 grid of control volumes.

The grid spacing is ∆x = ∆y = 1/51 and the cell centers are located at (xi,j , yi,j) = ((i−26)∆x, (j−
26)∆y). The permeability field has two regions which we refer to as the interior and boundary regions

with pointwise isotropic permeabilities Kint and Kbound. Kint can vary from grid block to grid block,

whereas Kbound is constant for all boundary cells. Defining r =
√

x2 + y2, the interior region is all

cells with cell centers r < ro and the exterior cells with r ≥ ro where ro = (1 − ∆x)/2. The

permeability field Kint can either be homogeneous or heterogeneous and the boundary permeability

Kbound is homogeneous with permeability value Kbound = 10−6 mini,j(Kint)i,j . The two regions

along with the grid are shown in Figure 6.3.

The wells are placed with respect to a secondary coordinate system defined as (x′, y′) = (x cos θ+

y sin θ,−x sin θ + y cos θ). The injection well is at (x′, y′) = 0, the first production well at (x′, y′) =

(0.3 cos ψ,−0.3 sinψ), and the second production well at (x′, y′) = (−0.3 cos ψ,−0.3 sin ψ), hence

both production wells are equidistant from the injector at angle of ψ from the y′ coordinate axis;
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we use ψ = π/6. A fixed rate condition is used for the injection well, with rates Qw,inj = Qinj and

Qr,inj = 0 (hence we inject only water or gas). For the production wells we use a fixed pressure

condition and produce with rates proportional to the mobility of the fluid

Qα,prod = −Qprod
λα

(λo + λw)
,

where Qprod is obtained from the divergence of the pressure field in the well blocks. In Figure 6.3

the upper well is the injection well, the lower left production well one and lower right production

well two.

For some tests we will also introduce an incline to the reservoir so that gravity forces affect

the flow. To maintain the symmetry of the flow the gravitation force is oriented between the two

production wells. This is done by setting the height of each control volume to

Hi,j = (1− y′i,j) sin ζ,

where y′i,j = −xi,j sin θ+yi,j cos θ corresponds to the grid block cell centers in the (x′, y′) coordinate

system and ζ is the angle of the incline.

Homogeneous Test Without gravity

We begin by presenting results for a homogeneous interior region without gravity. The simulation is

run for grid rotations of θ = 0, π/12, π/8, π/6, and π/4. For the angles used in our tests, production

well two is more aligned with the y-axis, and production well one is more aligned with the diagonal to

the grid lines. The angle θ = π/12 is chosen so that the line connecting the injector and production

well one is exactly diagonal to the grid lines, a preferential flow direction for TMU. The angle

θ = π/6 was chosen to align the grid with the line connecting the injector and production well

two, a preferential flow directions for SPU. Figure 6.4 shows the solution fronts at 0.1 pore volumes

injected (PVI) for all the angles. The water cut, that is, the saturation of the water produced by a

particular well, is shown in Figure 6.5.

From Figure 6.4 we see that SPU strongly prefers flow along the grid directions, which is partic-

ularly noticeable in the region above the injection well. TMU, on the other hand, prefers flow along

the diagonal to the grid lines. SMU produces much more symmetric solution fronts over all the grid

angles. These preferential directions are similar to what was observed in the simpler pressure driven

test.

Typically in a field setting it is not the profiles of the fronts that are of most interest, but the

integrated production data. This is the motivation for considering the water cut plots in Figure 6.5.

The dashed line in the figures is the water cut for production well one and the solid line for production

well two. The different shades of gray correspond to the angles, with black being θ = 0 and the

lightest gray for angle θ = π/4. First observe that the spread of the results is greatest for SPU and
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(a) SPU with
θ = 0

(b) TMU with
θ = 0

(c) SMU with
θ = 0

(d) SPU with θ =
π/8

(e) TMU with θ =
π/8

(f) SMU with θ =
π/8

(g) SPU with θ =
π/4

(h) TMU with θ =
π/4

(i) SMU with θ =
π/4

Figure 6.4: Results for the homogeneous three well problem for an immiscible displacement without
gravity for SPU, TMU, and SMU. Fronts are shown at PVI = 0.1 over the region x ∈ (x0 +1/3, x0−
1/3) and y ∈ (y0 + 1/3, y0 − 1/3) where (x0, y0) = (−1/10 sin θ,−1/10 cos θ). Solid gray grid cells
are the boundary cells with low permeability.

least for SMU. This suggests that SMU is least affected by grid orientation for this test problem.

Another observation is that SPU production well two, the more grid aligned production well, always

breaks through before production well one, the production well more aligned to diagonal, except for

the symmetric cases θ = 0 and π/4 where the lines collapse onto one another. The opposite is true

of TMU and SMU with production well one breaking through before production well two.

Homogeneous Test With gravity

In this test we add a gravitation force to problem, by introducing an incline in the domain at an

angle of ζ = π/4. Due to the density differences, the more buoyant phase (oil) will rise and the

heavier phase (water) will sink. The gravitational force may act against the pressure force due to

the wells causing the phases to move in different directions across a grid face. This is known as
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(c) SMU

Figure 6.5: Results for the homogeneous three well problem for an immiscible displacement without
gravity for SPU, TMU, and SMU. The dashed line is production well one and the solid line production
well two. The different line shades correspond to different angles, as indicated in the legend. For
θ = 0 the gridding leads to an exactly symmetric solution hence the two well plots lie directly on
top of one another. This is also the case for θ = π/4.

countercurrent flow. The balance between the injection and the gravitational force can be measured

through the definition of the non-dimensional gravity number

NG =
(ρw − ρo)g sin ζ

(µo + µw)qinj
.

In our work we let NG ≈ 1.6803. The higher NG the more important gravitational forces are as

opposed to viscous and well forces.

We run this test with the same angles as in the previous test: θ = 0, π/12, π/8, π/6, and π/4.

Regardless of the angle θ, the gravitational force always acts directly between the two production

wells along the y′-axis. Solution fronts for select angles are presented in Figure 6.6. The Figure

shows that, as in the non-gravity case, SPU prefers the directions corresponding to the grid lines.

The artificial updip kink in the solution front for SPU is more significant for the grid direction most

aligned with the gravitational field and less so for the other grid direction. Also, the fluid flows

further downdip along the grid direction most aligned with the gravitation force. TMU strongly

prefers the diagonal to the grid directions. The preference is most significant downdip. The updip

kink in TMU results shows less preference than SPU. SMU shows the most isotropic results. This

is similar to the previously presented results.

We present the water cut plots for all the angles in Figure 6.7. Once again the spread of the

curves is greatest for SPU with production well two always breaking through before production

well one. TMU always leads to production well two breaking through before production well one.

SMU shows the tightest clustering of the curves with production well two breaking through before

production well one.
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(a) SPU with
θ = 0

(b) TMU with
θ = 0

(c) SMU with
θ = 0

(d) SPU with θ =
π/8

(e) TMU with θ =
π/8

(f) SMU with θ =
π/8

(g) SPU with θ =
π/4

(h) TMU with θ =
π/4

(i) SMU with θ =
π/4

Figure 6.6: Results for the homogeneous three well problem for an immiscible displacement including
gravity for SPU, TMU, and SMU. Fronts shown at PVI = 0.06 over the region x ∈ (x0+1/3, x0−1/3)
and y ∈ (y0 + 1/3, y0 − 1/3) where (x0, y0) = (−3/40 sin θ,−3/40 cos θ). Solid gray grid cells are
the boundary cells with low permeability.

Heterogeneous Three Well Problem

In the presence of heterogeneity, it is less clear how numerical errors contribute to biasing of the

schemes. This is due to the presence of preferential flow paths defined by the permeability field.

To understand how the numerical errors affect the solutions in the presence of heterogeneity, we

simulate this same displacement with random permeability fields and compute an ensemble average

of the results. We use sequential Gaussian simulation (Deutsch and Journel, 1998) to generate log-

normally distributed permeability fields of dimensions 51× 51 on a unit square. The dimensionless

correlation length is set at λ = 5/51, corresponding to a correlation length of 5 grid blocks. The

mean of lnK is fixed at 3.0. The standard deviation, σ, of the ln K is σ = 0.5, corresponding to

a permeability contrast of approximately min(K)/ max(K) ∼ 3 × 10−2. The grid angle is θ = π/8

and 100 solution realizations are used for the ensemble average.
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(b) TMU
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(c) SMU

Figure 6.7: Results for the homogeneous three well problem for an immiscible displacement with
gravity for SPU, TMU, and SMU. The dashed line is production well one and the solid line production
well two. Different line shades correspond to different angles, as indicated in the legend.

(a) SPU with single re-
alization

(b) TMU with single re-
alization

(c) SMU with single re-
alization

(d) ensemble average of
SPU solutions

(e) ensemble average of
TMU solutions

(f) ensemble average of
SMU solutions

Figure 6.8: Results for the heterogeneous three well problem for an immiscible displacement without
gravity for SPU, TMU, and SMU and permeability contrast kmin/kmax = 3 × 10−2. The grid
rotation angle is θ = π/8. Fronts shown at PVI = 0.1 over the region x ∈ (x0 + 1/3, x0 − 1/3) and
y ∈ (y0 + 1/3, y0 − 1/3) where (x0, y0) = (−1/10 sin θ,−1/10 cos θ). Solid gray grid cells are the
boundary cells with low permeability.
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(a) SPU average (b) TMU average (c) SMU average

Figure 6.9: Ensemble average of 100 solution fronts for the heterogeneous three well problem with
permeability contrast is kmin/kmax = 3×10−2. The displacement is immiscible and includes gravity.
The schemes used are SPU, TMU, and SMU. The grid rotation angle is θ = π/8. Fronts shown at
PVI = 0.1 over the region x ∈ (x0 + 1/3, x0 − 1/3) and y ∈ (y0 + 1/3, y0 − 1/3) where (x0, y0) =
(−1/10 sin θ,−1/10 cos θ). Solid gray grid cells are the boundary cells with low permeability.

The solution fronts with no gravitational force, ζ = 0, at 0.1 PVI for both a single permeability

realization and the ensemble average are shown in Figure 6.8. For the single permeability realization

it is difficult to see the affect of the computational grid and the numerical errors. This is due to the

preferential nature expected from the permeability field. The utility of ensemble averaging is that it

can reveal these affects, since if the number of realizations is sufficiently large, the average converges

to a (potentially biased) solution.

The averaged results for SPU and TMU are similar to the homogeneous results. SPU is strongly

preferring flow along the grid directions and TMU diagonal to the grid lines. SMU, on the other

hand, seems less sensitive to the grid in the presence of heterogeneity, as was the case for the

homogeneous test. For other angles the results are similar. If the permeability contrast is increased,

the results show less bias, with SPU continuing to show the strongest bias.

The ensemble average with gravity, using the same gravity number as in section 6.2.2, at 0.06

PVI is shown in Figure 6.9. The average shows strong dependence for SPU along the grid directions

and diagonal to the grid directions for TMU, which is similar to what was seen in the homogeneous

test with gravity. The biasing near the injector is more apparent updip. SMU shows less sensitivity

to grid orientation, as in the previous tests. Similar results are seen for other grid angles.

6.2.3 Partially Miscible Model

As shown in section 4.7, the developed methods extend to general mobility functions. To demonstrate

that the methods perform well with more general mobility functions, we run the three well test again

for a homogeneous permeability with a gravity number of NG ≈ 0.45. We show the solution fronts

and gas/oil ratios in Figures 6.10 and 6.11, respectively. The method maintains monotonicity and

physical saturations, as expected, with both nonconvex mobility functions and countercurrent flow.
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(a) SPU with
θ = 0

(b) TMU with
θ = 0

(c) SMU with
θ = 0

(d) SPU with θ =
π/8

(e) TMU with θ =
π/8

(f) SMU with θ =
π/8

(g) SPU with θ =
π/4

(h) TMU with θ =
π/4

(i) SMU with θ =
π/4

Figure 6.10: Results for the homogeneous three well problem with gravity using the partially
miscible model for SPU, TMU, and SMU. Fronts are shown at PVI = 0.1 over the region x ∈
(x0 + 1/3, x0 − 1/3) and y ∈ (y0 + 1/3, y0 − 1/3) where (x0, y0) = (−1/10 sin θ,−1/10 cos θ). Solid
gray grid cells are the boundary cells with low permeability.

The results are comparable to the previous immiscible results with SPU showing strong bias along

the grid lines and TMU diagonal to the grid lines. SMU still produces rather isotropic solution

fronts and gas/oil ratios.

6.2.4 Fully Implicit Simulation

We close this chapter by demonstrating how multi-D upstream weightings can be used for fully

implicit simulation, that is, solving for both the pressure and mass concentrations variable implicitly

in time. Here we wish to show that the multi-D weightings at the same rate, or faster, than SPU even

with the more complex weightings. We therefore will not be using the volume relaxed framework

as we did in the explicit case and instead will define the saturation of water as Sw = Cw/ρw and

the saturation of oil as So = 1 − Sw. Other variable choices are possible (Aziz and Wong, 1989)
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(c) SMU

Figure 6.11: Results for the homogeneous three well problem with gravity using the partially
miscible model for SPU, TMU, and SMU. The dashed line is production well one and the solid line
production well two. The different line shades correspond to different angles, as indicated in the
legend.

and could be explored in future work. An advantage of the fully implicit framework is that it

allows for unrestricted time steps assuming that the necessary nonlinear iterations converge. Here

we only explore the most straightforward implementation of Newton’s method, but more complex

iteration strategies are possible, such as those described by Appleyard and Cheshire (1982), Kwok

and Tchelepi (2007), and Younis et al. (2009).

For our variable choice we have the nonlinear system of equations

F (P , Cw) =

(
F p(P ,Cw)

F w(P , Cw)

)
=

( ∑
α=o,w

(
Div

(
λ̄α(Sw,P ) • σα

)−Qα

)

Cw −Cn
w + ∆tV −1ρw

(
Div

(
λ̄w(Sw, P ) • σw

)−Qw

)
)

,

where we are trying to find values for P n+1 and Cn+1
w such that F (P n+1, Cn+1

w ) = 0. The Jacobian

matrix of this system is

J(P , Cw)T =

(
Jpp(P ,Cw)T Jcp(P , Cw)T

Jpc(P , Cw)T Jcc(P ,Cw)T

)
,
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where

Jpp(P , Cw)T =
∑

α=o,w

(
Div

(
diag

(
λ̄α(Sα, P )

)
T + diag (σα(P ))

(
∂λ̄α

∂P

)∣∣∣∣
T

(P ,Cw)

)
−

(
∂Qα

∂P

)∣∣∣∣
T

(P ,Cw)

)
,

Jcp(P , Cw)T =
∑

α=o,w

(
Div

(
diag (σα(P )

(
∂λ̄α

∂Cα

)∣∣∣∣
T

(P ,Cw)

)
−

(
∂Qα

∂Cα

)∣∣∣∣
T

(P ,Cw)

)
,

Jpc(P , Cw)T = ∆tV −1Div

(
diag

(
λ̄w(Sw, P )

)
T + diag (σw(P ))

(
∂λ̄w

∂P

)∣∣∣∣
T

(P ,Cw)

)
,

Jcc(P , Cw)T = I + ∆tV −1

(
Div

(
diag (σw(P )

(
∂λ̄w

∂Cw

)∣∣∣∣
T

(P ,Cw)

)
−

(
∂Qw

∂Cw

)∣∣∣∣
T

(P ,Cw)

)
.

Here the additional terms that arise due to the more complex stencil are ∂λ̄α

∂p . These terms are zero

for SPU but must be included for more general schemes. For our proposed multi-D schemes, the

derivatives can be computed with only minimal additional work, as shown in subsection 4.5.1.

To test the fully implicit method (FIM) with multi-D upwinding we run the three well test for an

immiscible waterflood. We inject 0.01 PVI in every time step and call this the global time step. If

Newtons method fails to converge within 10 iterations or if the saturation of water becomes greater

than 2 or less that −1, we cut the time step in half. When a sufficient number of cut time steps

are taken so that the simulation reaches the point that the global time step would have reached, we

try the global time step again. In Figure 6.12 we show solution fronts for SPU, TMU, and SMU

for angle θ = π/6 both with and without gravitational forces to demonstrate the FIM suffers from

the same grid dependent effects as the IMPEM method. The FIM method introduces increased

amounts of longitudinal, or streamline, diffusion but these are not sufficient to remove the biasing

of the solution. Other angles show similar behavior.

In Tables 6.1 and 6.2 we show the nonlinear iteration information. The results indicate that the

multi-D methods perform as well or better than SPU in all the tests both in terms of total number

of iterations and number of time step cuts. The average number of iterations for a convergent step is

fairly consistent over all the methods, but in the case without gravity, the TMU and SMU schemes

do better. In the case with gravity the SMU scheme does slightly worse than SPU in terms of

average number of iterations but still has less total iterations because of the decreased number of

time step cuts.
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(a) SPU without
gravity

(b) TMU without
gravity

(c) SMU without
gravity

(d) SPU with grav-
ity

(e) TMU with grav-
ity

(f) SMU with grav-
ity

Figure 6.12: Immiscible three well problem results for θ = π/8 using SPU, TMU, and SMU. Fronts
are shown at PVI = 0.1 over the region x ∈ (x0 + 1/3, x0 − 1/3) and y ∈ (y0 + 1/3, y0 − 1/3)
where (x0, y0) = (−1/10 sin θ,−1/10 cos θ). Solid gray grid cells are the boundary cells with low
permeability.

SPU TMU SMU

θ Number Average Total Number Average Total Number Average Total
of cuts iterations iterations of cuts iterations iterations of cuts iterations iterations

0 7 10.2 117 3 8.5 80 3 8.2 79
π/12 8 10.1 131 2 8.3 72 4 8.8 91
π/8 8 10.6 122 3 9.1 87 3 8.3 77
π/6 6 10.7 113 4 8.7 88 3 8.5 80
π/4 4 9.5 98 3 8.4 82 3 8.5 80

Table 6.1: Iteration counts for FIM without gravity. Average iterations are for converged time step
(does not include cuts); total iterations includes time step cuts.
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SPU TMU SMU

θ Number Average Total Number Average Total Number Average Total
of cuts iterations iterations of cuts iterations iterations of cuts iterations iterations

0 9 15.5 138 7 15.8 103 7 16.1 108
π/12 8 15.1 122 8 16.9 127 7 16.3 111
π/8 10 17.1 143 8 14.7 120 7 16.4 112
π/6 9 15.7 134 7 16.1 109 7 16.3 111
π/4 6 14.7 101 5 12.5 86 7 16.0 110

Table 6.2: Iteration counts for FIM with gravity. Average iterations are for converged time step
(does not include cuts); total iterations includes time step cuts.



Chapter 7

Future Work

7.1 Forcing Methods

The forcing methods developed in chapter 3 show considerable promise in reducing GOE. There is

still interesting work to be done. Stability analysis of the LETIS method would be a useful con-

tribution, and similar analysis has been done for related immersed boundary methods (Gustafsson,

2007; Mittal and Iaccarino, 2005). As noted in the text, we found that the LETIS methods did not

impact the time step selection. This is likely due to the fact that the well terms tend to be the

controlling factor in time step selection for our problems, but in other applications this may not be

the case. More detailed analysis of the method may reveal this.

The development of near-well models is something being pursued by many researchers (Mas-

carenhas and Durlofsky, 2000; Muggeridge et al., 2002). This is important for the forcing methods

because the analytic models we have assumed only hold for a homogeneous porous medium. To ro-

bustly incorporate these methods, coupling methods will need to be developed between the near-well

and interior regions. The coupling methods will need to incorporate the proper boundary conditions

and transfer between the possibly different physics in the two regions. Though this work will need

to draw upon methods from the multiscale modelling literature, our problems, as we have seen, can

be very unstable and sensitive to errors. New techniques will thus be needed. The coupling and

imposed boundary conditions will be different for both methods. Continued research may also lead

to a conservative formulation of the well-sponge method which may allow for a larger coupling region

and hence less grid sensitivity.

SBAV performed very well with both of the well modelling methods, but is not applicable for

general reservoir simulation. This suggests that the truly multi-D methods that we have developed

in this thesis should perform favorably when combined with the well forcing methods. The question

of how to trace the characteristics for interaction regions close to the near-well region needs to be

addressed, but as noted above, there has been some work in the immersed boundary literature which

91
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can help to address these open problems (Helzel et al., 2005; LeVeque, 2003).

7.2 Multi-D Transport

There are several extensions of this work that can be pursued in the future. First, the results of

chapters 5 and 6 apply to general grid topologies, but the methods have only been implemented for

Cartesian grids. An efficient and robust implementation of the methods on general grid topologies,

perhaps coupled with a general MPFA framework, would be a significant contribution. Lamine and

Edwards (2008) have recently proposed a different class of multi-D transport methods for multi-

phase flow in porous media with particular emphasis on unstructured grids. An implementation of

the interaction region framework for transport has been developed for Cartesian adaptive meshes

and has been coupled with the VCMP method, and the results were favorable(Lambers et al., 2009).

An extension to 3-D could be done by using multi-D in the areal and SPU in the vertical, but it is

possible to develop a fully coupled interaction region based method for 3-D transport. In this case

there would be more flow directions to consider as well as more choices of interpolation points since

there are more degrees of freedom. Even for the 3-D constant velocity problem there is not a single

parameter family of schemes but a three (coupled) parameter family of schemes (Roe and Sidilkover,

1992; Van Ransbeeck and Hirsch, 1997).

Another interesting topic would be to investigate why the seemingly “optimal” scheme for the

scalar advection framework and the nonlinear model are different. To do this it will be necessary to

more completely understand the differences between tracing on the total velocity field as opposed to

the phase flux field. Performing fluid stability analysis in a manner similar to that done by (Riaz and

Meiburg, 2004) using the phase flux field instead of the total velocity field may also be necessary.

The schemes presented in chapter 6 extend in a fairly straightforward manner to np-phase flow

problems assuming no mass transfer between the phases. The incorporation of mass transfer, even

for the two-phase case, could introduce complications since phase interactions may make the defi-

nition of a monotone multi-D upwind state more difficult. Continued use a phase-based upstream

weighting strategy will likely reduce these complications as it avoids the need to do characteristic de-

composition, and is commonly used in practice (Sammon, 1988; Brenier and Jaffré, 1991). A natural

place to start a study of this would be to look at the three-phase, three-component (water, oil, gas)

black oil model. In this model, the oil and water components only exist in their respective phases,

and the gas component can exist in the gas and oil phases, but with the gas solubility of the oil phase

strictly a function of the gas pressure (Aziz and Settari, 1979). Compositional extensions should be

considered as these are the class of problems that will be most unstable. The inclusion of capillary

effects should not introduce any major complications for the nonlinear framework in Darcy form,

as these effects would only effect the σα values, and hence would not effect the monotonicity of the

schemes outline in section 4.6. If the fractional flow form of the equations is used, capillary effects
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have a similar effect as gravity (Aziz and Settari, 1979) and hence the methods multi-D methods

developed in chapter 4, such as tight multi-D upstream weighting and smooth multi-D upstream

weighting, are not appropriate.

More work might also be invested in developing a multi-D method for more general scalar non-

linear equations, that is, equations of the form

dc

dt
+∇ ·

(
f(c)

g(c)

)
= 0,

where it is not assumed that f ′(c)/g′(c) is a constant independent of c. Also, higher-order methods

should be investigated. It is not apparent how to construct and limit slopes for interaction based

methods. LeVeque’s (1997) work on wave oriented methods as well as the residual distribution

literature (Deconinck and Koren (1997); Deconinck et al. (2003); and the references therein) will

likely inform this work.



Chapter 8

Conclusions

The primary goal of this work has been to lessen the grid dependent nature of important numerical

errors, whether these errors arose from the initial near-well flow or the interior discretization used

for transport. Numerical simulations of adverse mobility ratio flows are highly sensitive to numerical

errors, as these errors can trigger unstable modes in the solution. Therefore, numerical solutions

may change significantly with grid refinement or changes in the orientation of the computational

grid with respect to the primary flow direction. In this work we do not seek to remove the physical

instability present in the system, as doing this would require adding an unreasonably large amount

of grid independent physical diffusion (Tan and Homsy, 1997; Riaz and Meiburg, 2004) and thus

drastically change the physics of the displacement. Instead, we want to allow the underlying rock

properties to trigger the physical instability instead of the numerical errors.

Throughout this work we have aimed to develop practical methods which can be used with a

variety of simulation strategies, gridding systems, and discretizations. We have exclusively used

Cartesian grids as they allow for easy comparison of the methods and understanding of the impact

of the various numerical errors. Furthermore, as noted in the introduction, many applications within

reservoir simulation require the use of structured, or nearly-structured grids, so we do not want our

gridding strategy to be determined in order to eliminate grid dependency. Unless otherwise noted

in the text, we expect no trouble in extending the outlined methods to more general grid topologies.

We have established that the grid orientation effect and other grid dependencies largely arise

from:

• an underlying physical instability in high mobility ratio flows

• the flow in the immediate vicinity of the injection well

• errors in the transport discretization that are largely grid dependent.

This thesis was split into two parts: the development of methods to force solutions around the
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injection well and multi-D transport discretizations which control the structure of the first order

numerical errors.

In order to reduce errors around the injection well we developed two forcing methods: the

well-sponge and LETIS (chapter 3). In the well-sponge method cell averages were forced using a

penalty method. Though not completely non-intrusive, the well-sponge method did not require the

modification of the flux calculation and was implemented as a correction step on top of the original

time stepping methodology. The drawback of the well-sponge was that it was not conservative,

so we also developed LETIS, or local embedding through immersed structures. In this method

the near-well region defined cut faces. On these cut faces a portion of the flux came from the

assumed near-well solution, and the other portion of the flux came from the numerical method used

for transport or flow. This was more intrusive than the well-sponge method in that it required

modification of the flux calculation and the pressure discretization, but it had the added benefit of

being fully mass conservative. Both methodologies drastically reduced GOE caused by the injection

well as was demonstrated for two miscible gas injection problems. Both of these strategies increased

the simulation cost only during the initial injection period because once the front had passed through

the near-well region the integrals became constant in time.

In order to control the errors in the interior of the simulation domain, multi-D transport methods

were developed in chapter 4. While single point upstream weighting (SPU) is popular within reservoir

engineering for its simplicity, it results in numerical errors which are strongly correlated with the

computational grid. We began by presenting modified equations analysis for a family multi-D

schemes (Roe and Sidilkover, 1992; Van Ransbeeck and Hirsch, 1997). This analysis showed that

incorporation of flow information into the computational stencil changed the first order diffusive

error. In multiple dimensions there is not a scalar first order error, but a numerical diffusion tensor

whose structure depends on the discretization and local flow information. For miscible displacements

in the fractional flow framework, the structure of the error tensor in the flow aligned coordinate

system largely predicted the structure of the grid dependency.

In chapter 4 we also developed a new framework that generalized the family of multi-D finite

difference schemes to rough velocity fields and a class of nonlinear equations. The generalization

was based on a local coupling through interaction regions which maintained as much flow informa-

tion in the scheme as possible. This local coupling allowed us to rigorously prove and ensure that

the methods remained monotone and fully generalized to arbitrary grid topologies in 2-D. We pro-

posed two purely upstream multi-D schemes: tight multi-D upstream weighting (TMU) and smooth

multi-D upstream weighting (SMU). The two limiting members of the purely upstream family of

discretizations were SPU and TMU with SMU existing in between the limits. The equivalence of

TMU to the N-scheme (Roe and Sidilkover, 1992) and SMU to Koren’s methods (Koren, 1991) was

shown for constant scalar advection. As all of these methods are phase based methods, they are

directly usable within the current reservoir methodology (Aziz and Settari, 1979). The methods
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also assumed nothing about the underlying pressure discretization, making them usable with the

multi-point flux approximations which are becoming increasingly important.

A novel method called the Flat Scheme was also introduced in this thesis. This method is for

scalar advection, is positive for arbitrary divergence free velocity fields, and has minimal constant

transverse diffusion. The effect of this diffusion property is that the strength of the preferential flow

directions are reduced for the unstable flow problems as the strength of the instability is largely

related to the transverse diffusion (Riaz and Meiburg, 2004).

For both scalar (chapter 5) and nonlinear (chapter 6) problems the use of multi-D methods was

shown to reduce grid dependency over SPU. This was demonstrated for a number of homogeneous

as well as heterogeneous problems. For heterogeneous problems it was necessary to consider an

ensemble average of many simulation results to properly assess the effects of the numerics. As the

permeability contrast was increased, the average solution showed less dependence on the grid. For

the scalar problem TMU performed most favorably of all the purely upstream schemes, and the Flat

Scheme, TMU with an additional numerical diffusion term, performed even more favorably. For the

nonlinear problems SMU performed most favorably, but it is our opinion that this is a model and

a formulation dependent result which requires more study (see chapter 7). One possible method to

initially assess whether GOE is a concern for a given simulation project would be to run the problem

with both SPU and one or more of the multi-D methods. Drastically different results would suggest

that some method of assessing and handling modelling error must be used.

In order to increase the robustness of multiphase simulation, a relaxed volume framework was

developed in chapter 6. The key property of this framework was that it robustly handled volume

errors in the pressure equation so as to preserve both physical mass and saturation values. This was

necessary as more complex transport schemes result in a more nonlinear discrete pressure equation,

and inconsistency between the transport and pressure discretizations can result in nonphysical grid

values. This framework was only used when handling the transport equation in an explicit manner.

Finally, we also demonstrated how multi-D discretizations can be used for fully implicit simula-

tion. Multi-D discretizations seemed to increase the speed and domain of convergence for Newton’s

method, though this is certainly something that warrants further analysis and work.

In summary this Ph.D. work has provided the following specific contributions:

• Grid orientation effects are largely caused by the interaction of a physically unstable flow with

grid dependent numerical errors. These errors arise from both perturbations set up by the

handling of the injection well and the numerical discretization used in the interior.

• A combination of reducing the rotational sensitivity of numerical errors in the finite difference

scheme and forcing the flow in the immediate neighborhood of the injection well was shown to

reduce or remove grid orientation effects.

• Two forcing methods, the well-sponge and LETIS, were proposed that significantly reduced
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grid orientation effects. This was demonstrated for a homogeneous miscible model problem.

The LETIS method maintains conservation to round-off error.

• A general framework for multi-D schemes, for both scalar advection and a class of scalar non-

linear equations, with local stability constraints, can be formulated using interaction regions.

• Modified equations analysis can be used in a predictive manner for determining preferential

flow angles on structured grids for the presented miscible model within the scalar advection

framework.

• Two purely upstream biased multi-D schemes were presented, tight multi-D upstream weight-

ing and smooth multi-D upstream weighting. Both methods significantly reduce grid orien-

tation effects and numerical biasing over the commonly used single point upstream weighting

method.

• The Flat scheme was also introduced in this thesis for scalar advection problems. The scheme is

positive, has minimal constant transverse diffusion, and reduces the strength of the preferential

flow directions.

• A volume relaxed framework for nonlinear simulation was introduced. This framework handled

volume errors in the pressure equation to preserve physical mass and saturation values.

There are several areas in which this work should be continued, for a more detailed discussion see

chapter 7. More complex near-well models should be explored for use with the forcing methods. This

will require the development of coupling methods for enforcing boundary conditions. The multi-D

upstream weighting methods should also be incorporated into the forcing methods. Development of

a simulator using multi-D upstream weightings along with more general pressure discretizations and

grid toplogies would be a significant contribution. Extension of the multi-D schemes to systems of

equations which model more complex physics, such as the black oil model, compositional simulation,

and steam injection problems, should also be considered. Finally, the development of higher-order

multi-D methods based on multi-D limiters may help to reduce grid orientation even further and

are therefore worth exploring.



Appendix A

Positivity of the Flat Scheme

In this appendix we demonstrate that the Flat scheme as defined in section 4.8 and Table 4.2 is a

positive scheme. Recall that the Flat scheme is for scalar advection in a divergence free velocity

field. We represent this as

ct +∇ · (uc) = 0 (A.1)

where ∇u = 0. Since we will only be considering scalar advection, we do not use the σ and ζ

notation as in chapter 4, but instead use U and C.

Given the definition of the Flat scheme, we first note that a half-face k can only have a diffusive

flux correction if Uk−1 ≥ 0 and Uk+1 ≤ 0. This means that at most two half-faces of the interaction

region can have a diffusive flux correction. Of the 16 possible volumetric flux sign configurations,

four will have two diffusive flux corrections and eight will have one diffusive flux correction. For

this reason, without loss of generality, we can consider the case U2 ≥ 0, U1 ≥ 0, U3 ≤ 0, and hence

there is a diffusive correction on half-face 2. If U4 ≤ 0, then there is also a diffusive correction on

half-face 3 and otherwise there is no other diffusive correction for the interaction region. All other

cases are handled by symmetry or admit no diffusive correction thus reducing the Flat scheme to

the N-scheme which has already been shown to be positive.

For the case that U4 > 0 there is only a diffusive correction on half-face 2 and hence the only

(ak, bk) pair which is potentially non-zero is (a2, b2). It will be seen that in the case when U4 ≤ 0,

and thus (a3, b3) may be non-zero, we need only consider (a2, b2) since the constraints on the values

of (a2, b2) and (a3, b3) are not coupled. To do this we derive constraints on the values of (a2, b2), as

well as (a3, b3) when necessary, so that the method is positive and then show that the definitions of

(a2, b2) given in Table 4.2 satisfy these constraints. We explicitly derive constraints on the values

for the case where U4 ≤ 0 as this is the more complex case since (a3, b3) may not be zero. It can be

easily verified that the same constraints are sufficient for (a2, b2) when U4 > 0.
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With the assumption that U1 ≥ 0, U2 ≥ 0, U3 ≤ 0 and U4 ≤ 0 we have that

C̄1 = C1,

C̄2 = (1− ω2)C2 + ω2C1,

C̄3 = (1− ω3)C4 + ω3C1,

C̄4 = C1.

This leads to the flux expressions

F1 = U1C1,

F2 = [U2ω2 + a2(1− ω3)− b2]C1 + [U2(1− ω2) + b2]C2 − [a2(1− ω3)]C4,

F3 = [U3ω3 − a3(1− ω2) + b3]C1 + [a3(1− ω2)]C2 + [U3(1− ω3)− b3]C4,

F4 = U4C4.

Recall that we can write the flux expression as Fk =
∑4

j=1 rk,jCj , so that the update to subcell k is

ϕk = Fk −Fk−1 =
4∑

j=1

(rk,j − rk−1,j)Cj =
4∑

j=1

δrk,jCj ,

where we define δrk,j = rk,j − rk−1,j . Hence the scheme is positive if δrk,j ≤ 0 for k 6= j. Now,

δr1,j , j = 1, ..., 4 do not depend on a2, a3, b2 or b3. Therefore, these terms need not be considered.

In addition, the flux expressions do not depend on C3. Hence, δrk,3 = 0 for all k. The remaining

terms are given by

δr2,1 = U2ω2 − U1 + a2(1− ω3)− b2,

δr2,2 = U2(1− ω2) + b2,

δr2,4 = −a2(1− ω3),

δr3,1 = U3ω3 − U2ω2 − a2(1− ω3)− a3(1− ω2) + b2 + b3,

δr3,2 = (a3 − U2)(1− ω2)− b2,

δr3,4 = (a2 + U3)(1− ω3)− b3,

δr4,1 = U4 − U3ω3 + a3(1− ω2)− b3,

δr4,2 = −a3(1− ω2),

δr4,4 = −U3(1− ω3) + b3.

It can be verified that for the range of velocities that (a2, b2) 6= (0, 0) and/or (a3, b3) 6= (0, 0) that
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δrk,j satisfy the conditions of positivity provided

0 ≤ a2 ≤ min(−U3, U1 − U2ω2), 0 ≤ b2 ≤ min(U1, U2),

0 ≤ a3 ≤ min(U2,−U4 + U3ω3), 0 ≤ b3 ≤ min(−U4,−U3).

As mentioned above it can be easily verified that the same constraints are sufficient for a2 and b2

when U4 ≥ 0 (in which case (a3, b3) = (0, 0) according to Table 4.2).

Since the constraints are not coupled, we only need to show that these hold for (a2, b2). We

do this in two parts b2 = 0 (0 ≤ θ̃2 ≤ θ∗) and separately a2 = 0 (θ∗ ≤ θ̃2 ≤ π
2 − θ∗), see Table

4.2, which is possible since a2 and b2 cannot simultaneously be nonzero. For the remaining range,

π/2− θ∗ ≤ θ̃2 ≤ π/2, (a2, b2) = (0, 0) so there is no affect on positivity. According to the definitions

in the table a2 ≥ 0 and b2 ≥ 0 so the first inequality is satisfied for both cases.

As a reminder we restate several relevant definitions from the text

θ̃2 = arctan(U2/U1), Ũ2 = 2/(1/U1 − 1/U3),

Ṽ2 = Ũ2 tan θ̃2, γ̃2 =
√

Ũ2
2 + Ṽ 2

2 = Ũ2

√
1 + tan2 θ̃2,

θ∗ = arctan

(
3−√5

2

)
, ψ =

1
2

(
| cos θ̃ − sin θ̃| sin θ̃ cos θ̃

)
≈ 0.1925.

1. 0 ≤ θ̃2 ≤ θ∗ hence a2 ≥ 0 and b2 = 0:

In this case given the definition of a2, we have that

a2 = γ̃2

(
ψ − sin θ̃2 cos θ̃2| cos θ̃2 − sin θ̃2|

cos θ̃2(cos θ̃2 − sin θ̃2)

)

≤ γ̃2ψ

= ψŨ2

√
1 + tan2 θ̃2

≤ 2ψ min(U1,−U3)
√

1 + tan2 θ̃2

≤ (1− tan θ̃2)min(−U3, U1)

≤ min(−U3, U1(1− tan θ̃2))

= min(−U3, U1 − U2)

= min(−U3, U1 − U2ω2).

The first inequality is due to

max
0≤ϕ≤θ∗

(
ψ − sin ϕ cos ϕ| cos ϕ− sin ϕ|

cosϕ(cosϕ− sin ϕ)

)
= ψ
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and the second inequality follows the basic property of harmonic averages that

Ũ2 =
2

1
U1
− 1

U3

≤ 2min(U1,−U3).

The final two inequalities are easily verified to hold over the range 0 ≤ θ̃2 ≤ θ∗, and ω2 = 1 in

this range.

2. θ∗ ≤ θ̃2 ≤ π
2 − θ∗ hence a2 = 0 and b2 ≥ 0:

In this case given the definition of b2 we have that

b2 = γ̃2

(
ψ − sin θ̃2 cos θ̃2| sin θ̃2 − cos θ̃2|

2 sin θ̃2 cos θ̃2

)

≤ 2U1

√
1 + tan2 θ̃2

(
ψ − sin θ̃2 cos θ̃2| sin θ̃2 − cos θ̃2|

2 sin θ̃2 cos θ̃2

)

≤ 2U1

√
1 + tan2 θ̃2ψ

≤ U1 min(1, tan θ̃)

= min(U1, U2).

The first inequality is a result of the harmonic average definition of Ũ2 which implies that

Ũ2 ≤ 2U1, and the last two can be verified over the range θ∗ ≤ θ̃ ≤ π
2 − θ∗.



Appendix B

Monotonicity of Multi-D Schemes

for General Mobility Functions

For general mobility functions the upwind state C∗i is defined as

F∗i = fi(C∗i ) =





maxCi≤c≤Ci+1 fi(c), if Ci ≤ Ci+1

maxCi+1≤c≤Ci fi(c), if Ci > Ci+1

,

with the property that

C∗i =





Ci, if f ′i(C
∗
i ) ≥ 0

Ci+1, if f ′i(C
∗
i ) ≤ 0

Cs, if f ′i(C
∗
i ) = 0

.

The point Cs is a point such that f ′i(Cs) = 0. The multi-D mobility weighting is then defined as

ζ̄i =





(1− ωi)ζ̄i − ωiζ̄i−1, if f ′i(C
∗
i ) > 0, f ′i+1(C

∗
i−1) > 0

(1− ωi)ζ̄i+1 − ωiζ̄i+1, if f ′i(C
∗
i ) < 0, f ′i+1(C

∗
i+1) < 0

ζ̄(C∗i ), otherwise

,

where ω∗i is

ω∗i =





max
(
0, σi−1

σi

)
, if f ′i(C

∗
i ) > 0, f ′i+1(C

∗
i−1) > 0

max
(
0, σi+1

σi

)
, if f ′i(C

∗
i ) < 0, f ′i+1(C

∗
i+1) < 0

0, otherwise

. (B.1)
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These mobility weightings can be rewritten in vector form as

Aζ̄ = Bζ + Bsζ(CS),

ζ̄ = A−1Bζ + A−1Bsζ(CS)

= Rζ + Rsζ(CS),

where A is an M-matrix and B as well as Bs are non-negative matrices. Hence R and Rs are

non-negative stencil matrices.

We make the following assumptions:

• non-negative discrete masses, C ≥ 0

• an interpolation, parameters ω = ω(ω∗) with ω∗ defined by B.1 and 0 ≤ ω(ω∗) ≤ min(1, ω∗)

• ωl < 1 for at least one l ∈ {1, 2, . . . , nir}

We will check monotonicity for a subcell k and need to check the three analogous cases to those

in Theorem 1: (1) C∗k = Ck and C∗k−1 = Ck, (2) C∗k = Ck and C∗k−1 = Ck−1, (3) C∗k = Ck+1 and

C∗k−1 = Ck−1. (4) C∗k = Ck and C∗k−1 = Cs, (5) C∗k = Ck+1 and C∗k−1 = Cs.

1. C∗k = Ck and C∗k−1 = Ck:

The accumulation term is

ϕk = F̄k − F̄k−1

= σkζk − σk−1ζk.

Hence the derivative with respect to Cj 6=k is

∂ϕk

∂Cj
= 0.

2. C∗k = Ck and C∗k−1 = Ck−1:

The accumulation term is

ϕk = F̄k − F̄k−1

= σk ζ̄k − σk−1ζ̄k−1

= σk(1− ωk)ζk − (σk−1 − σkωk)ζ̄k−1

= σk(1− ωk)ζk − (σk−1 − σkωk)
nir∑

j=1

rk−1,jζj .
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Taking the derivative of the accumulation term with respect to Cj 6=k gives

∂ϕk

∂Cj
= −(σk−1 − σkωk)rk−1,jζ

′(Cj).

The construction of the face mobilities means that for each j such that rk−1,j 6= 0, f ′j(Cj) =

σjζ
′(Cj) ≥ 0 and also sign(σj) = sign(σj+1). By the properties of ωk it is easily shown that

either

sign(σk−1 − σkωk) = sign(σk) or σk−1 − σkωk = 0.

This means that for each j such that rk−1,j 6= 0

sign ((σk−1 − σkωk)rk−1,jζ
′(Cj)) = sign (σk−1ζ

′(Cj)) = sign (σjζ
′(Cj)) .

Hence

(σk−1 − σkωk)rk−1,jζ
′(Cj) ≥ 0

and ∂ϕk

∂Cj
≤ 0 for j 6= k.

3. C∗k = Ck+1 and C∗k−1 = Ck−1:

The accumulation term

ϕk = F̄k − F̄k−1

= σk ζ̄k − σk−1ζ̄k−1

=
nir∑

j=1

(σkrk,j − σk−1rk−1,j)ζj .

Taking the derivative with respect to Cj 6=k gives

∂ϕk

∂Cj
= (σkrk,j − σk−1rk−1,j)ζ ′(Cj).

By similar arguments to those above, if rk,j 6= 0 then σkζ ′(Cj) ≤ 0 and if rk−1,j 6= 0 then

σk−1ζ
′(Cj) ≥ 0. Hence overall we have that ∂ϕk

∂Cj
≤ 0 for j 6= k.

4. C∗k = Ck and C∗k−1 = Cs:

The accumulation term is

ϕk = F̄k − F̄k−1

= σkζk − σk−1ζ(Cs)
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Hence the derivative with respect to Cj 6=k is

∂ϕk

∂Cj 6=k
= 0.

5. C∗k = Ck+1 and C∗k−1 = Cs:

The accumulation term is

ϕk = F̄k − F̄k−1

=
nir∑

j=1

σkrk,j − σk−1ζ(Cs).

Taking the derivative with respect to Cj 6=k gives

∂ϕk

∂Cj
= σkrk,jζ

′(Cj).

By similar arguments to those above, if rk,j 6= 0 then σkζ ′(Cj) ≤ 0. Hence overall we have

that ∂ϕk

∂Cj
≤ 0 for j 6= k.



Appendix C

Lower Bound on the Mass

Variables

In section 4.2 we assumed that we had a discretization of the form

Cn+1
α,i = Gα,i(Cn

o , Cn
w),

where Cn
α is a vector of average mass values of phase α for the entire grid. Furthermore, we assumed

that the discretization had the property that

∂Cn+1
α,i

∂Cn
α,j

=
∂Gα,i(Co, Cw)

∂Cα,j
≥ 0, ∀ i, j,

where 0 ≤ Cα ≤ Cn
α (≤ is computed pointwise). We now prove the claim that this property along

with consistency leads to Cn+1
α,i ≥ 0 if Cn

α,j ≥ 0 for all j. For convenience we will prove this for

α = w in the absence of source terms.

One of the implications of consistency of the discretization is that if Cw ≡ 0 then Gw,i(0, Cn
o ) =

0. We now define another vector function Cn
w,j(c) such that

Cn
w,j(c) =

(
Cn

w,1, Cn
w,2, · · · , Cn

w,j−1, c, 0, · · · , 0
)T

.

Now we can write the update as

Cn+1
w,i = Gw,i(Cn

w,Cn
o )

= Gw,i(0,Cn
o )︸ ︷︷ ︸

0

+
N∑

j=1

(∫ Cn
w,j

0

∂Gw,i

(
Cn

w,j(c), C
n
o

)

∂Cw,j
dc

)
.
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Now they quantities in the integrals are all non-negative by the monotonicity assumption, this

implies that Cn+1
w,i ≥ 0. The only complications that source terms adds to this argument is that if

there is an injector in a cell then Gw,i(0, Cn
o ) 6= 0 but some positive value.
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